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Abstract

In the same way that subsequent pauses in spoken language are used to convey information, it is also possible to transmit information
in communication systems not only by message content (data payload), but also with its timing. This paper presents an event-triggering
strategy that utilizes timing information by transmitting in a state-dependent fashion. We consider the stabilization of a continuous-time,
time-invariant, linear plant over a digital communication channel with bounded delay and subject to bounded plant disturbances. We
propose an encoding-decoding scheme that guarantees a sufficient information transmission rate for stabilization of the plant. We also
determine a lower bound on the information transmission rate of the sensor, which is necessary for stabilization. For small values of the
delay, we show that the timing information implicit in the triggering events is enough to stabilize the plant with any positive information
transmission rate. In contrast, when the delay increases beyond a critical threshold, the timing information alone is not enough, and the
data payload transmission rate begins to increase. Large values of the delay require transmission rates higher than what the classic data-
rate theorem prescribes. Our results also provide a novel encoding-decoding scheme for complex systems, which can be readily applied
to diagonalizable multivariate systems with complex eigenvalues. The identified rates depend on parameters in the event-triggered law
and plant dynamics, and the bounds on the plant disturbances and channel delays. The technical treatment does not rely upon any a priori
probabilistic distribution of plant disturbances, initial condition, or delay.

Key words: Control under communication constraints; event-triggered control; networked control systems; stabilization under delays.

1 Introduction

For many cyber-physical systems, the feedback loop is closed
over a communication channel [Kim and Kumar, 2012]. In this
context, data-rate theorems state that the minimum commu-
nication rate to achieve stabilization is equal to the entropy
rate of the plant, expressed by the sum of the unstable modes
in nats (one nat corresponds to 1/ ln 2 bits.) Key contribu-
tions by Tatikonda and Mitter [2004a], Nair and Evans [2004],
and Liberzon [2003] consider a “bit-pipe" communication chan-
nel, capable of noiseless transmission of a finite number of
bits per unit time evolution of the plant. Extensions to noisy
communication channels are considered in [Sahai and Mitter,
2006, Matveev and Savkin, 2009, Yüksel and Başar, 2013]. Sta-
bilization over time-varying bit-pipe channels, including the
erasure channel as a special case, are studied by Minero et al.
[2009]. Additional formulations include stabilization of switched
linear systems [Liberzon, 2014], uncertain systems [Ishii,
2010], multiplicative noise [Ding et al., 2018], optimal con-
trol [Kostina and Hassibi, 2019, Khina et al., 2019], and stabi-
lization using event-triggered strategies [Tallapragada and Cortés,
2016, Pearson et al., 2017, Linsenmayer et al., 2017, Tallapragada et al.,
2018, Demirel et al., 2017, Li et al., 2012].

While the majority of communication systems transmit in-
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formation by adjusting the content of the message, it is also
possible to communicate information by adjusting the trans-
mission time of a symbol [Anantharam and Verdú, 1996]. The
work [Khojasteh et al., 2018a] studies the fundamental limita-
tions of using timing information for stabilization and show that
it is possible to stabilize a plant using inherent information in
the timing of the transmissions. In fact, it is known that event-
triggering control techniques encode information in the timing
in a state-dependent fashion. The work Kofman and Braslavsky
[2006] shows that, in the absence of delay in the communication
process, without plant disturbances, and assuming the controller
has knowledge of the triggering strategy, one can stabilize the
plant with any positive data payload transmission rate. Build-
ing upon this observation, our previous work [Khojasteh et al.,
2019] considers transmission delays in the communication chan-
nel and quantifies the information contained in the timing of the
triggering events for the stabilization of scalar plants without dis-
turbances. For small values of the delay, we show that stability
can be achieved with any positive information transmission rate
(the rate at which sensor transmits data payload). However, as
the delay increases to values larger than a critical threshold, the
timing information contained in the triggering action itself may
not be enough to stabilize the plant and the information transmis-
sion rate must be increased. The work in [Khojasteh et al., 2019]
also extends the treatment to the vector case, but the analysis is
limited to plants with only real eigenvalues of the open-loop gain
matrix. Furthermore, the required exponential convergence guar-

Preprint submitted to Automatica 19 June 2019

http://arxiv.org/abs/1805.01969v4


antees lead to a mismatch between sensor and controller about
the possible values of the state estimation error, which requires an
additional layer of complexity in the sensor’s transmission policy
of the event-triggered control design. In contrast, in this work
we consider the weaker stability notion of input-to-state prac-
tical stability (ISpS) Jiang et al. [1994], Sharon and Liberzon
[2012], and this allows us to simplify the treatment and design
a simpler event-triggered control strategy. The literature has not
considered to what extent the implicit timing information in the
triggering events is still useful in the presence of plant distur-
bances. Beyond the uncertainty due to the unknown delay in
communication, disturbances add an additional degree of uncer-
tainty to the state estimation process, whose effect needs to be
properly accounted for. With this in mind, we study ISpS of a
linear, time-invariant plant subject to bounded disturbance over
a communication channel with bounded delay. Finally, we point
out that the work Ling [2017] utilizes event-triggering to provide
a sufficient bit rate condition for scalar linear systems with suffi-
ciently small delays. The work [Ling, 2018] extends these results
to second-order systems with real eigenvalues. In addition, the
works [Tanwani and Teel, 2017, Tanwani et al., 2016] investi-
gate event-triggered stabilization of linear and nonlinear systems
under communication constraints, but do not explicitly quantify
the effect of quantization in the presence of system disturbances
or the timing information carried by the triggering events.

Our contributions are threefold. First, for scalar real plants with
disturbances, we derive a sufficient condition on the information
transmission rate for the whole spectrum of possible communica-
tion delay values. Specifically, we design an encoding-decoding
scheme that, together with the proposed event-triggering strat-
egy, rules out Zeno behavior and ensures that there exists a con-
trol policy which renders the plant ISpS. We show that for small
values of the delay, our event-triggering strategy achieves ISpS
using only implicit timing information and transmitting data pay-
load at a rate arbitrarily close to zero. On the other hand, since
larger values of the delay imply that the information transmit-
ted has become excessively outdated and corrupted by the dis-
turbance, increasingly higher communication rates are required
as the delay becomes larger. Our second contribution pertains to
the generalization of the sufficient condition to complex plants
with complex open-loop gain subject to disturbances. This result
sets the basis for the generalization of event-triggered control
strategies that meet the bounds on the information transmission
rate for the ISpS of vector systems under disturbances and with
any real open-loop gain matrix (with complex eigenvalues). The
first two contributions provide stronger results than our prelimi-
nary conference papers Khojasteh et al. [2018c,b] and contain a
complete technical treatment. Our final contribution is a neces-
sary condition on the information transmission rate for scalar real
plants, assuming that at each triggering time the sensor transmits
the smallest possible packet size to achieve the triggering goal
for all realizations of the delay and plant disturbance 1 .

1 Throughout the paper, we use the following notation. R, R≥0, C, and
N represent the set of real, nonnegative real, complex, and natural num-
bers, resp. We let |.| and ‖.‖ denote absolute value and complex absolute
value, resp. Let log and ln represent base 2 and natural logarithms, resp.
For a function f : R → R

n and t ∈ R, we let f(t+) = lims→t+ f(s)
denote the right-hand limit of f at t. In addition, ⌊x⌋ (resp. ⌈x⌉) denotes
the nearest integer less (resp. greater) than or equal to x. We denote the
modulo function by mod(x, y), representing the remainder after divi-
sion of x by y. The function sign(x) denotes the sign of x. Any Q ∈ C

can be written as Q = Re(Q) + i Im(Q) = ‖Q‖eiφQ , and for any

y ∈ R we have ‖eQy‖ = eRe(Q)y . tr(A) denotes the trace of matrix

2 Problem formulation

We consider a networked control system described by a plant-
sensor-channel-controller tuple, cf. Figure 1. The plant is de-

Plant

Communication

Channel

SensorController

Fig. 1. System model.

scribed by a scalar, continuous-time, linear time-invariant model,

ẋ = Ax(t) +Bu(t) + w(t), (1)

where x(t) ∈ R and u(t) ∈ R for t ∈ [0,∞) are the plant
state and control input, respectively, and w(t) ∈ R represents the
plant disturbance. The latter is a Lebesgue-measurable function
of time, and upper bounded as

|w(t)| ≤M, (2)

where M ∈ R≥0. In (1), A ∈ R is positive (i.e., the plant is un-
stable), B ∈ R \ {0}, and the initial condition x(0) is bounded.
We assume the sensor measurements are exact and there is no
delay in the control action, which is executed with infinite pre-
cision. However, measurements are transmitted from sensor to
controller over a communication channel subject to a finite data
rate and bounded unknown delay. We denote by {tks}k∈N the se-
quence of times when the sensor transmits a packet of length
g(tks ) bits containing a quantized version of the encoded state.

We let ∆′
k = tk+1

s − tks be the kth triggering interval. The
packets are delivered to the controller without error and entirely
but with unknown upper bounded delay. Let {tkc}k∈N be the se-
quence of times where the controller receives the packets trans-
mitted at times {tks}k∈N. We assume the communication delays

∆k = tkc − tks , for all k ∈ N, satisfy

∆k ≤ γ, (3)

where γ ∈ R≥0. When referring to a generic triggering or recep-

tion time, for convenience we skip the super-script k in tks and tkc ,
and the sub-script k in ∆k and ∆′

k.

Remark 1 In our model clocks are synchronized at the sensor
and the controller. In case of using a time stamp, due to the

A, and m denotes the Lebesgue measure. For a scalar continuous-time
signal w(t), we define |w|t = sups∈[0,t] |w1(s)|. Finally, to formulate
the stability properties, for non-negative constant d we define

K(d) := {f : R≥0 → R≥0|f continuous,

strictly increasing, and f(0) = d},

K∞(d) := {f ∈ K(d)|f unbounded},

K2
∞ := {f : R≥0 × R≥0 → R≥0|

∀t ≥ 0, f(., t) ∈ K∞(0), and ∀r ≥ 0 f(r, .) ∈ K∞(0)}

L := {f : R≥0 → R≥0|f continuous,

strictly decreasing, and lim
s→∞

f(s) = 0},

KL := {f : R≥0 × R≥0 → R≥0|f continuous,

∀t ≥ 0, f(., t) ∈ K(0), and ∀r > 0 f(r, .) ∈ L}.
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communication constraints, only a quantized version of it can be
encoded in the packet g(ts). •
At the controller, the estimated state is represented by x̂ and
evolves during the inter-reception times as

˙̂x(t) = Ax̂(t) +Bu(t), t ∈ (tkc , t
k+1
c ), (4)

starting from x̂(tk+c ), which represents the state estimate of the

controller with the information received up to time tkc with initial

condition x̂(0) (the exact way to construct x̂(tk+c ) is explained
later in Section 3).

Assumption 2 The sensor can compute x̂(t) for all time t ≥ 0.

Remark 3 We show in Section 4.1 that Assumption 2 is valid
for our controller design, provided the sensor knows x̂(0) and the
times the actuator performs the control action. In practice, this
corresponds to assuming an instantaneous acknowledgment from
the actuator to the sensor via the control input, known as com-
munication through the control input [Sahai and Mitter, 2006,
Matveev and Savkin, 2009]. To obtain such causal knowledge,
one can monitor the output of the actuator provided that the con-
trol input changes at each reception time. In case the sensor has
only access to the plant state, since the system disturbance is
bounded (2), assuming that the control input is continuous during
inter-reception times and jumps in the reception times such that
B|u(t−c ) − u(tc)| > M , the controller can signal the reception
time of the packet to the sensor via ẋ(t) (other specific construc-
tion are provided in [Ling, 2018, Tatikonda and Mitter, 2004b]).
Finally, we note that any necessary condition on the information
transmission rate obtained with Assumption 2 in place remains
necessary without it too. •
Under Assumption 2, the state estimation error at the sensor is

z(t) = x(t) − x̂(t), (5)

and we rely on this error to determine when a triggering event
occurs in our controller design. We next define a modified ver-
sion of input-to-state practical stability (ISpS) [Jiang et al., 1994,
Sharon and Liberzon, 2012], which is suitable for our event-
triggering setup with unknown but bounded delay.

Definition 4 The plant (1) is ISpS if there exist ξ ∈ KL, ψ ∈
K∞(0), d ∈ R≥0, ι ∈ K∞(d), and ϑ ∈ K2

∞ such that

|x(t)|≤ξ (|x(0)|, t)+ψ (|w|t)+ι(γ)+ϑ(|w|t, γ), ∀t ≥ 0.

Note that, for a fixed γ, this definition reduces to the standard
notion of ISpS. Given that the initial condition, delay, and system
disturbances are bounded, ISpS implies that the state must be
bounded at all times beyond a fixed horizon. Our objective is to
ensure the dynamics (1) is ISpS given the constraints posed by
the system model of Figure 1. Let bs(t) be the number of bits
transmitted in the data payload by the sensor up to time t. The
information transmission rate is

Rs = lim sup
t→∞

(bs(t)/t) = lim sup
N→∞

(

N
∑

k=1

g(tks )
/

N
∑

k=1

∆′
k

)

, (6)

where the latter equality follows by noting that, at each triggering
time tks , the sensor transmits g(tks ) bits. In addition to the data
payload, the reception time of the packets carries information.

Consequently, let bc(t) be the amount of information measured
in bits included in data payload and timing information received
at the controller until time t. The information access rate is Rc =
lim supt→∞(bc(t)/t).

Remark 5 We do not consider the bounded delays (3) to be
chosen from any specific distribution. Thus, the information that
can be gained about the triggering time ts from the reception
time tc may be quantified by the Rényi 0th-order information
functional I0 [Nair, 2013, Shingin and Ohta, 2012]. Assuming
the controller has receivedN packet by time t, we deduce bc(t) =
∑N

k=1

(

g(tks) + I0(t
k
s ; t

k
c )
)

. •
According to the data-rate theorem, if Rc < A/ ln 2, the value
of the state in (1) becomes unbounded as t → ∞ (the result
for plants evolving in continuous time stated in [Hespanha et al.,
2002, Theorem 1] does not consider disturbances, but can read-
ily be generalized to account for them), and hence (1) is not
ISpS. The data-rate theorem characterizes what is needed by the
controller, and does not depend on the specific feedback struc-
ture (including aspects such as information pattern at the sen-
sor/controller, communication delays, and whether transmission
times are state-dependent, as in event-triggered control, or peri-
odic, as in time-triggered control). In our discussion below, the
bound Rc = A/ ln 2 serves as a baseline for our results on the
information transmission rate Rs to understand the amount of
timing information contained in event-triggered control designs
in the presence of unknown communication delays.

We do not consider delays, plant disturbances, and initial condi-
tion to be chosen from any specific distribution. Therefore, our
results are valid for any arbitrary delay, plant disturbances, and
initial condition with finite support. In particular, our goal is to
find upper and lower bounds on Rs, where the lower bound is
necessary at least for a realization of the initial condition, delay,
and disturbances, and the upper bound is sufficient for all real-
izations of the initial condition, delay, and disturbances. In ad-
dition, our lower bound is necessary for any control policy u(t)
to render the plant (1) ISpS under the class of event-triggering
strategies described next.

3 Event-triggered design

Here we introduce the class of event-triggered policies considered
in this paper to select transmission times that make the plant (1)
ISpS. Consider the following class of triggers: for J ∈ R positive,
the sensor sends a message to the controller at tk+1

s if

|z(tk+1
s )| = J, (7)

provided tkc ≤ tk+1
s for k ∈ N and t1s ≥ 0. A new transmis-

sion happens only after the previous packet has been received by
the controller. Since the triggering time ts is a real number, its
knowledge can reveal an unbounded amount of information to
the controller. However, due to the unknown delay in the channel,
the controller does not have perfect knowledge of it. In fact, both
the finite data rate and the delay mean that the controller may not
be able to compute the exact value of x(tc). To address this, let
z̄(tc) be an estimated version of z(tc) reconstructed by the con-
troller knowing |z(ts)| = J , the bound (3) on the delay, and the
packet received through the channel. Using z̄(tc), the controller
updates the state estimate via the jump strategy,

x̂(t+c ) = z̄(tc) + x̂(tc). (8)

3



Note that |z(t+c )| = |x(tc)− x̂(t+c )| = |z(tc)− z̄(tc)|.
We assume the packet size g(ts) calculated at the sensor is so that

|z(t+c )| = |z(tc)− z̄(tc)| ≤ J, (9)

is satisfied for all tc ∈ [ts, ts + γ]. This property plays a criti-
cal role in our forthcoming developments. In particular, we will
show later that our controller design for the sufficient characteri-
zation on the transmission rate builds on identifying a particular
encoding-decoding strategy and a packet size to make (9) hold
true. Likewise, our necessary characterization builds on identify-
ing the minimal packet sizes necessary to ensure (9).

The importance of (9) starts to become apparent in the following
result: if this inequality holds at each reception time, the state
estimation error (5) is bounded for all time.

Lemma 6 Consider the plant-sensor-channel-controller model
with plant dynamics (1), estimator dynamics (4), triggering strat-
egy (7), and jump strategy (8). Assume |z(0)| = |x(0)−x̂(0)| < J
and (9) holds at all reception times {tkc}k∈N. Then, for all t ≥ 0,

|z(t)| ≤ JeAγ +
|w|t
A

(

eAγ − 1
)

. (10)

PROOF. At the reception time, z(tk+c ) satisfies (9), hence using

the triggering rule (7), we deduce |z(t)| ≤ J for all t ∈ (tkc , t
k+1
s ].

Since J is smaller than the upper bound in (10), and z(t
(k+1)+
c )

satisfies (9), it remains to prove (10) for t ∈ (tk+1
s , tk+1

c ).
From (1), (4), and (5), we have ż(t) = Az(t) + w(t) during

inter-reception time intervals (tkc , t
k+1
c ). Also, from (7) it follows

(tk+1
s , tk+1

c ) ⊆ (tkc , t
k+1
c ). Thus, for all t ∈ (tk+1

s , tk+1
c ), we have

z(t) = eA(t−tk+1
s )z(tk+1

s ) +

∫ t

tk+1
s

eA(t−τ)w(τ)dτ. (11)

When a triggering occurs |z(tk+1
s )| = J , hence the absolute

value of the first addend in (11) is upper bounded by JeA(t−tk+1
s ).

Also, for the second addend in (11) we have

|
∫ t

tk+1
s

eA(t−τ)w(τ)dτ | (12)

≤ |w|t
∫ t

tk+1
s

|eA(t−τ)|dτ =
|w|t
A

(

eA(t−tk+1
s ) − 1

)

.

By (3), we have t − tk+1
s ≤ tk+1

c − tk+1
s ≤ γ, and the result

follows. ✷

Using (2), we deduce from Lemma 6 that |z(t)| ≤ JeAγ +
M
A

(

eAγ − 1
)

for all t ≥ 0. Next, we rule out Zeno behavior (an
infinite amount of triggering events in a finite time interval) for
our our event-triggered control design. To do this, let 0 < ρ0 < 1
be a design parameter, and assume the packet size g(ts) is selected
at the sensor to ensure a stronger version of (9),

|z(t+c )| = |z(tc)− z̄(tc)| ≤ ρ0J. (13)

Clearly, (13) implies (9). The following result shows that
given (13) the time between consecutive triggers is uniformly
lower bounded.

Lemma 7 Consider the plant-sensor-channel-controller model
with plant dynamics (1), estimator dynamics (4), triggering strat-
egy (7), and jump strategy (8). Assume |z(0)| = |x(0)−x̂(0)| < J
and (13) holds at all reception times {tkc}k∈N. Then for all k ∈ N

tk+1
s − tks ≥ ln

(

JA+M
ρ0JA+M

)/

A.

PROOF. By considering two successive triggering times tks
and tk+1

s and the reception time tkc , from (7) it follows tks ≤
tkc ≤ tk+1

s . From (1), (4), and (5), we have ż(t) = Az(t) + w(t)
during inter-reception time intervals (tkc , t

k+1
c ), consequently

using the definition of the triggering time tk+1
s (7) it follows

|z(tk+c )eA(tk+1
s −tkc )| + |

∫ tk+1
s

tkc
eA(tk+1

s −τ)w(τ)dτ | ≥ J . Us-

ing (13) and (12), we have ρ0Je
A(tk+1

s −tkc )+(M/A)(eA(tk+1
s −tkc )−

1) ≥ J , which is equivalent to tk+1
s − tkc ≥ 1

A ln(
J+M

A

ρ0J+
M
A

). The

result follows from using tks ≤ tkc in this inequality. ✷

Given the uniform lower bound on the inter-event time obtained
in Lemma 7, we deduce that the event-triggered control design
does not exhibit Zeno behavior. The frequency with which trans-
mission events are triggered is captured by the triggering rate

Rtr = lim sup
N→∞

(

N
/

N
∑

k=1

∆′
k

)

. (14)

Using Lemma 7, we deduce that the triggering rate (14) is uni-
formly upper bounded under the event-triggered control design,
i.e., for all initial conditions, possible delay and plant noise val-
ues, we have

Rtr ≤ A
/

ln
( JA+MA

ρ0JA+M

)

. (15)

4 Sufficient and necessary conditions on the information
transmission rate

Here we derive sufficient and necessary conditions on the infor-
mation transmission rate (6) to ensure (1) is ISpS. As mentioned
above, our approach is based on the characterization of the trans-
mission rate required to ensure that (9) holds at all reception
times. Section 4.1 introduces a quantization policy that, together
with the event-triggered scheme, provides a complete control de-
sign to guarantee (1) is ISpS and rules out Zeno behavior. Sec-
tion 4.2 presents lower bounds on the packet size and trigger-
ing rate required to guarantee (1) is ISpS, leading to our bound
on the necessary information transmission rate. We conclude the
section by comparing the sufficient and necessary bounds, and
discussing their gap.

4.1 Sufficient information transmission rate

We start by showing that, if (9) holds at each reception time
{tkc}k∈N, then a linear controller renders the plant (1) ISpS. We
note that similar results exist in the literature (e.g., [Peralez et al.,
2018, Heemels et al., 2012a,b, Girard, 2014]) and we here extend
them to our event-triggering setup with quantization and unknown
delays.

Proposition 8 Under the assumptions of Lemma 6, the con-
troller u(t) = −Kx̂(t) renders (1) ISpS, provided A−BK < 0.
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PROOF. By letting u(t) = −K(x(t)− z(t)), we rewrite (1) as
ẋ(t) = (A−BK)x(t)+BKz(t)+w(t). Consequently, we have

|x(t)| ≤ e(A−BK)t|x(0)| (16)

+ e(A−BK)t

∫ t

0

e−(A−BK)τ (BK|z(τ)|+ |w(τ)|)dτ.

since A−BK < 0, the first summand in (16) is a KL function of
|x(0)| and time. Thus, it remains to prove the second summand
in (16) is upper bounded by summation of a K∞(0) function of
|w|t, a K∞(d) function of γ, and a K2

∞ function of |w|t and
γ. The second summand in (16) is upper bounded by −(1 −
e(A−BK)t)(BK|z|t + |w|t)/(A−BK). Since 1− e(A−BK)t <
1, using Lemma 6 we deduce the second summand in (16) is
upper bounded by ψ (|w|t)+ ι(γ)+ϑ(|w|t, γ), where ψ(|w|t) =
(|w|t/− (A−BK)) which is a K∞(0) function of |w|t, ι(γ) =
((BKJeAγ)/−(A−BK)) which is a K∞(d) function of γ with

d = ι(0), and ϑ(|w|t, γ) = ((BK|w|t)/−A(A−BK))(eAγ−1)
which is a K2

∞ function of γ and |w|t. ✷

4.1.1 Design of quantization policy

The result in Proposition 8 justifies our strategy to obtain a suffi-
cient condition on the transmission rate to guarantee (1) is ISpS,
which consists of finding conditions to achieve (9) for all re-
ception times. Here we specify a quantization policy and deter-
mine the resulting estimation error as a function of the number
of bits transmitted. This allows us to determine the packet size
that ensures (13) (and consequently (9)) holds, thereby leading
to a complete control design which ensures (1) is ISpS and rules
out Zeno behavior. In turn, this also yields a sufficient condition
on the information transmission rate. In our sufficient design the
controller estimates z(tc) as

z̄(tc) = sign(z(ts))Je
A(tc−q(ts)), (17)

where q(ts) is an estimation of the triggering time ts constructed
at the controller as described next. According to (7), at every
triggering event, the sensor encodes ts and transmits a packet
p(ts). The packet p(ts) consists of g(ts) bits of information and
is generated according to the following quantization policy. The
first bit p(ts)[1] denotes the sign of z(ts). As shown in Figure 2,

p

p

p

p

Fig. 2. The encoding-decoding algorithms in the proposed event-trig-
gered control scheme. In this example, we assume g(ts) = 5 and j is
an even natural number. The packet p(ts) of length 5 can be generated
and sent to the controller. Recall that p(ts)[1] encode the sign of z(ts).
After reception and decoding the controller choose the center of the
smallest sub-interval as its estimation of ts, denoted by q(ts).

the reception time tc provides information to the controller that

ts could fall anywhere between tc − γ and tc. Let b > 1. To
determine the time interval of the triggering event, we break the
positive time line into intervals of length bγ. Consequently, ts
falls into [jbγ, (j+1)bγ] or [(j+1)bγ, (j+2)bγ], with j being a
natural number. We use the second bit of the packet to determine
the correct interval of ts. This bit is zero if the nearest integer less
than or equal to the beginning number of the interval is an even
number and is 1 otherwise. This can be written mathematically
as p(ts)[2] = mod

(

⌊ ts
bγ ⌋, 2

)

. For the remaining bits of the packet,

the encoder breaks the interval containing ts into 2g(ts)−2 equal
sub-intervals. Once the packet is complete, it is transmitted to
the controller, where it is decoded and the center point of the
smallest sub-interval is selected as the best estimate of ts. Thus,

|ts − q(ts)| ≤ bγ/2g(ts)−1. (18)

We have employed this quantization policy in our previous
work [Khojasteh et al., 2019] and analyzed its behavior in the
case with no disturbances. Next, we extend our analysis to sce-
narios with both unknown delays and plant disturbances. As
discussed in Remark 3, we start by showing that under the pro-
posed encoding-decoding scheme, provided the sensor knows
x̂(0) and has causal knowledge of the delay (i.e., the controller
acknowledges the packet reception times), then Assumption 2
holds. The proof of the next result is in Appendix A.

Proposition 9 Under the assumptions of Lemma 7, using the
estimation (17) and the quantization policy described in Figure 2,
if the sensor knows x̂(0) and has causal knowledge of delay, then
it can calculate x̂(t) for all time t ≥ 0.

4.1.2 Sufficient packet size

Our next result bounds the difference |ts − q(ts)| between the
triggering time and its quantized version so that (13) holds at all
reception times.

Lemma 10 Consider the plant-sensor-channel-controller model
with plant dynamics (1), estimator dynamics (4), triggering strat-
egy (7), and jump strategy (8). Assume |z(0)| = |x(0)−x̂(0)| < J
Using the estimation (17) and the quantization policy described

in Figure 2, if |ts − q(ts)| ≤ 1
A ln(1+

ρ0−
M
JA (eAγ−1)

eAγ ), then (13)

holds for all reception times {tkc}k∈N if J > M
Aρ0

(eAγ − 1).

PROOF. Using (11), (17), and the triangular inequality, we

deduce |z(tc) − z̄(tc)| ≤ JeA(tc−ts)|(1 − eA(ts−q(ts)))| +
|
∫ tc
ts
eA(tc−τ)w(τ)dτ |. By applying the bounds (3), (2),

and (12) on first and second addend respectively it follows

|z(tc)− z̄(tc)| ≤ |JeAγ(1− eA(ts−q(ts)))|+ (M/A)
(

eAγ − 1
)

.
Therefore, ensuring (13) reduce to

|1− eA(ts−q(ts))| ≤ η, (19)

where η = e−Aγ(ρ0 − M
AJ (e

Aγ − 1)). Since J > M
Aρ0

(eAγ − 1),

we have 0 ≤ η < 1. Consequently, using (19), we deduce
ln(1 − η)/A ≤ ts − q(ts) ≤ ln(η + 1)/A. It follows that to sat-
isfy (13) for all delay values, requiring |ts−q(ts)| ≤ min{| ln(1−
η)|/A, ln(1 + η)/A} suffices, and the result now follows. ✷

The next result provides a lower bound on the packet size so
that (13) is ensured at all reception times.

Theorem 11 Consider the plant-sensor-channel-controller
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model with plant dynamics (1), estimator dynamics (4), trig-
gering strategy (7), and jump strategy (8). Assume |z(0)| =
|x(0) − x̂(0)| < J , Then there exists a quantization policy that

achieves (13) for all reception times {tkc}k∈N with any packet size

g(tks )≥max
{

0, 1 + log
Abγ

ln(1 + ρ0−(M/(JA))(eAγ−1)
eAγ )

}

(20)

where b > 1 and J > M
Aρ0

(eAγ − 1).

The proof is a direct consequence of (18) and Lemma 10. The
combination of the upper bound (15) obtained for the triggering
rate and Theorem 11 yields a sufficient bound on the information
transmission rate. To sum it up, we conclude that there exist a
information transmission rate

Rs ≤ (21)

A

ln( JA+M
ρ0JA+M )

max

{

0, 1 + log
Abγ

ln(1 + ρ0−(M/(JA))(eAγ−1)
eAγ )

}

,

that is sufficient to ensure (13) and, as a consequence (9), for
all reception times {tkc}k∈N. Therefore, from Proposition 8, the
bound (21) is sufficient to ensure the plant (1) is ISpS.

Remark 12 The lower bound given on the packet size in (20)
might not be a natural number or might even be zero. If g(ts) = 0,
this means that there is no need to put any data payload in
the packet and the plant can be stabilized using only timing in-
formation. However, in this case, the sensor still needs to in-
form the controller about the occurrence of a triggering event.
Thus, when g(ts) = 0 is sufficient, the sensor can stabilize the
system by transmitting a fixed symbol from a unitary alphabet
(see Khojasteh et al. [2018a]). In practice, the packet size should
be a natural number or zero, so if we do not want to use the fixed
symbol from a unitary alphabet, the packet size

g(ts) = max

{

1,

⌈

1 + log Abγ

ln(1+
ρ0−(M/(JA))(eAγ

−1)

eAγ )

⌉}

, (22)

is sufficient for stabilization (the latter is the one used in our
simulations of Section 6). •

4.2 Necessary information transmission rate

Here, we present a necessary condition on the information trans-
mission rate required by any control policy to render plant (1)
ISpS under the class of event-triggering strategies described in
Section 3. In Section 4.1, to derive a sufficient bound that guaran-
tees (1) is ISpS, our focus has been on identifying a quantization
policy that could handle any realization of initial condition, de-
lay, and disturbance. Instead, the treatment here switches gears to
focus on any quantization policy, for which we identify at least
a realization of initial condition, delay, and disturbance that re-
quires the necessary bound on the information transmission rate.

We start our discussion by making the following observation
about the property (9). If this property is not satisfied at an arbi-
trary reception time tkc , i.e., z(tkc ) > J , andw(t) > 0 or w(t) < 0
for all t ≥ tkc , then tkc will be the last triggering time. In this case,

after tkc , the controller needs to estimate the inherently unstable
plant in open loop. In this case, there exists a realization of the
initial condition, system disturbances, and delay for which the
absolute value of the state estimation error grows exponentially

with time. Thus, for any given control policy, there exists a real-
ization for which the absolute value of the state tends to infinity
with time and (1) is not ISpS.

As a consequence of this observation, our strategy to provide a
necessary condition for (1) to be ISpS consists of identifying a
necessary condition on the information transmission rate Rs to
have (9) at all reception times {tkc}k∈N. In turn, we do this by
finding lower bounds on the packet size g(ts) and the triggering
rate Rtr. We do this in two steps: first, we find a lower bound
on the number of bits transmitted at each triggering event which
holds irrespective of the triggering rate. Then, we find a lower
bound on the triggering rate, and the combination leads us to the
necessary condition on Rs.

4.2.1 Necessary packet size

We rely on (11) to define the uncertainty set of the sensor about
the estimation error at the controller z(tc) given ts as follows

Ω(z(tc)|ts) = {y : y = ±JeA(tr−ts) +

∫ tr

ts

eA(tr−τ)w(τ)dτ,

tr ∈ [ts, ts + γ], |w(τ)| ≤M for τ ∈ [ts, tr]}.

Additionally, we define the uncertainty of the controller about
z(tc) given tc, as follows

Ω(z(tc)|tc) = {y : y = ±JeA(tc−tr) +

∫ tc

tr

eA(tc−τ)w(τ)dτ,

tr ∈ [tc − γ, tc], |w(τ)| ≤M for τ ∈ [tr, tc]}.

We next show the relationship between these uncertainty sets.

Lemma 13 Assume the plant-sensor-channel-controller model
described in Section 2, with plant dynamics (1), estimator dy-
namics (4), triggering strategy (7), and jump strategy (8). More-
over, assume M ≤ AJ . Then Ω(z(tc)|ts) = Ω(z(tc)|tc) and

m (Ω(z(tc)|tc)) = 2(M/A+ J)(eAγ − 1).

PROOF. Due to symmetry, it is not difficult to show that
Ω(z(tc)|ts) is the same as Ω(z(tc)|tc). We characterize the set
Ω(z(tc)|ts) as follows. We reason for the case when z(ts) = J
(the argument for the case z(ts) = −J is analogous). Clearly,
z(tc) takes its largest value when tc = ts+ γ and w(τ) =M for

τ ∈ [ts, tc], which is equal to z(tc) = JeAγ +(M/A)(eAγ − 1).
On the other hand, finding the smallest value of z(tc) is more
challenging. First, when tc = ts we have

z(tc) = J. (23)

Second, by setting w(τ) = −M for τ ∈ [ts, tc] and tc = ts +∆,

z(tc) = JeA∆ − (M/A)(eA∆ − 1). (24)

Taking the derivative of (24) with respect to ∆ results in

dz(tc)/d∆ = AJeA∆ −MeA∆ = eA∆(AJ −M). (25)

If M ≤ AJ and the derivative in (25) is non-negative, z(tc)
in (24) would be a non-decreasing function of ∆. Hence, the
smallest value of z(tc) in (24) occurs for ∆ = 0 which is equal

to the value of z(tc) in (23). Hence, Ω(z(tc)|ts) = [J, JeAγ +
(M/A)(eAγ − 1)], and the result follows. ✷
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Lemma 13 allows us to find a lower bound on the packet size g(ts)
which is valid irrespective of the triggering rate.

Lemma 14 Under the assumptions of Lemma 13, if (9) holds
for all reception times {tkc}k∈N, then the packet size at every
triggering event must satisfy

g(tks ) ≥ max
{

0, log
(

(M/(AJ) + 1)
(

eAγ − 1
))}

. (26)

PROOF. To ensure (9) for all reception times, we calculate
a lower bound on the number of bits to be transmitted to
ensure the sensor uncertainty set Ω(z(tc)|ts) is covered by
quantization cells of measure 2J . Therefore, we have g(ts) ≥
max {0, log (m(Ω(z(tc)|ts))/m(B(J)))}, where B(J) is a ball
centered at 0 of radius J , and we have incorporated the fact that
the packet size g(ts) must be non-negative. From Lemma 13 we

have log m(Ω(z(tc)|ts))
m(B(J)) ≥ log (M/A+J)(eAγ−1)

J . ✷

4.2.2 Lower bound on the triggering rate

Having found a lower bound on the packet size, our next step is
to determine a lower bound on the triggering rate.

Lemma 15 Under the assumptions of Lemma 13, for all the
quantization policies which ensure (9) at all reception times
{tkc}k∈N, if there exists a delay realization {∆k ≤ α}k∈N, a dis-
turbance realization, and an initial condition such that

|z(tk+c )| = |z(tkc )− z̄(tkc )| ≥ Υ, (27)

for all k ∈ N, then there exists a delay realization, a disturbance
realization, and an initial condition such that

Rtr ≥ A
(

ln
(

eAα(JA+M)
/

(ΥA+M)
))−1

. (28)

PROOF. Using the definition of the triggering time (7), (27),

tkc = tks + ∆k, and (11), we have ΥeA(tk+1
s −tks−∆k) +

(M/A)
(

eA(tk+1
s −tks−∆k) − 1

)

≤ J , which is equivalent to

eA(tk+1
s −tks ) ≤ eA∆k(JA+M)

/

(ΥA+M). (29)

By hypothesis, (27) occurs for all k ∈ N when ∆k ≤ α. Hence,
by (29), we upper bound the triggering intervals as

∆′
k= t

k+1
s − tks ≤A−1 ln

(

eAα(JA+M)
/

(ΥA+M)
)

.(30)

The result follows by substituting (30) into (14). ✷

If we do not limit the collection of permissible quantization poli-
cies, a packet may carry an unbounded amount of information,
which can bring the state estimation error arbitrarily close to zero
at all reception times and for all delay and disturbance values.
This would give rise to a conservative lower bound on the trans-
mission rate. Specifically, using ∆k ≤ γ, cf. (3), putting Υ = 0,
and combining (28) and (26) we deduce there exists a delay re-
alization, disturbance realization, and initial condition such that

Rs ≥ A
max

{

0, log
((

M
AJ + 1

) (

eAγ − 1
))}

ln
(

eAγ JA+M
M

) , (31)

is necessary for all quantization policies. To find a tighter nec-
essary condition we instead limit the collection of permissible
quantization policies. Since ensuring (9) at each reception time
is equivalent to dividing the uncertainty set at the controller
Ω(z(tc)|tc) by quantization cells of measure of at most 2J , our
approach is to restrict the class of quantization policies to those
that use the minimum possible number of bits to ensure (9).

Assumption 16 We assume at each triggering time the sensor
transmits the smallest possible packet size (data payload) to en-
sure (9) at each reception time for all initial conditions and all
possible realizations of the delay and plant disturbance. More-
over, to simplify our analysis in the encoding-decoding scheme,
we choose the center of each quantization cell as z̄(tc).

Based on this assumption, the sensor brings the uncertainty about
z(tc) at the controller down to a quantization cell of measure at
most 2J , using the smallest possible packet size. The following
result, whose proof is in Appendix B, shows that, for this class
of quantization policies, there exists a delay realization such that
the sensor can only shrink the estimation error for the controller
to at most half of the largest value of J dictated by (9).

Lemma 17 Let β = ln (1 + 2AJ/(AJ +M))
/

A ≤ γ. Under
the assumptions of Lemma 13, for all the quantization policies
ensuring (9) at all reception times {tkc}k∈N with Assumption 16
in place, there exists a delay realization {∆k ≤ β}k∈N, initial
condition, and plant disturbance such that

|z(tk+c )| = |z(tkc )− z̄(tkc )| ≥ J/2. (32)

Combining Lemmas 15 and 17, we deduce there exists a delay
realization, disturbance realization, and initial condition such that

Rtr ≥ A

(

ln

((

1 +
2AJ

AJ +M

)

JA+M

0.5JA+M

))−1

(33)

is valid for all quantization policies that use the minimum required
packet size according to Assumption 16. Finally, the combination
of the bounds on the packet size (cf. Lemma 14) and on the
triggering rate (cf. (33)) yields the next result.

Theorem 18 Under the assumptions of Lemma 13, for all the
quantization policies which ensure (9) at all reception times
{tkc}k∈N with Assumption 16 in place, there exists a delay real-
ization {∆k ≤ β}k∈N, a disturbance realization, and an initial
condition such that

Rs ≥ A
max

{

0, log
(

(M/(AJ) + 1)
(

eAγ − 1
))}

ln
((

1 + 2AJ
AJ+M

)

JA+M
0.5JA+M

) . (34)

Note that the bound (34) is tighter than the bound in (31). Figure 3
compares our bounds on the sufficient (21) and necessary (34)
information transmission rates for (1) to be ISpS. We attribute
the gap between them to the fact that, while the necessary con-
dition employs quantization policies with the minimum possible
packet size according to Assumption 16, the encoding-decoding
scheme proposed in the sufficient design does not generally sat-
isfy this assumption. Also, the fact that we bound the triggering
rate and the packet size independently in our analysis might fur-
ther contribute to the gap.

As depicted in Figure 3, for sufficiently small delay values the
timing information is substantial, and the plant can be ISpS in
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the presence of bounded system disturbances when the sensor
transmits data payload at a rate smaller than the one indicated by
the data-rate theorem. On the other hand, as the communication
delay increases, the timing information becomes less useful and
the uncertainty about the state increases at the controller. Since in
our design the state estimation error is smaller than the triggering
threshold at each reception time (9), for larger values of delay
Rs exceeds the access rate prescribed by the data-rate theorem.
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Fig. 3. Illustration of the sufficient (21) and necessary (34) transmission
rates as functions of the delay upper bound γ. Here, A = 5.5651,
ρ0 = 0.1, b = 1.0001, M = 0.4, and J = M

Aρ0
(eAγ − 1) + 0.1. The

rate dictated by the data-rate theorem is Rc ≥ A/ ln 2 = 8.02874.

5 Extension to complex linear systems

In this section, we generalize our treatment to complex linear
plants with disturbances. The results presented here can be readily
applied to multivariate linear plants with disturbance and diago-
nalizable open loop-gain matrix (possibly, with complex eigenval-
ues). This corresponds to handling the n-dimensional real plant
as n scalar (and possibly complex) plants, and derive a sufficient
condition for them. We consider a plant, sensor, communication
channel and controller described by the following continuous lin-
ear time-invariant system

ẋ = Ax(t) +Bu(t) + w(t), (35)

where x(t) and u(t) belong to C for t ∈ [0,∞). Here w(t) ∈
C represents a plant disturbance, which is upper bounded as
‖w(t)‖ ≤ M , with M ∈ R≥0. Also, A ∈ C with Re(A) ≥ 0
(since we are only interested in unstable plants) and B ∈ C is
nonzero. The model for the communication channel is the same
as in Section 2. To establish a baseline for comparison of the
bounds on the information transmission rate, we start by stating a
generalization of the classical data-rate theorem for the complex
plant (35). The proof is in Appendix C.

Theorem 19 Consider the plant-sensor-channel-controller
model with plant dynamics (35). If x(t) remains bounded as
t→ ∞, then Rc ≥ 2Re(A)/ ln 2.

5.1 Event-triggered control for complex linear systems

The state estimate x̂ evolves according to the dynamics (4) along
the inter-reception time intervals starting from x̂(tk+c ) with initial
condition x̂(0). We use the state estimation error defined as (5)
with initial condition z(0) = x(0) − x̂(0). A triggering event

happens at tk+1
s if

‖z(tk+1
s )‖ = J, (36)

provided tkc ≤ tk+1
s for k ∈ N and t1s ≥ 0, and the triggering

radius J ∈ R is positive. At each triggering time, the packet

p(ts) of size g(ts) is transmitted from the sensor to the controller.
The packet p(ts) consists of a quantized version of the phase of
z(ts), denoted φq(z(ts)), and a quantized version of the triggering

time ts. By (36), we have z(ts) = Jeiφz(ts) . We construct a
quantized version, denoted q(z(ts)), of z(ts) at the controller

as q (z(ts)) = Jeiφq(z(ts)) . Additionally, using the bound (3)
and the packet at the controller, the quantized version of ts is
reconstructed and denoted by q(ts). Hence, at the controller, z(tc)
is estimated as follows

z̄(tc) = eA(tc−q(ts))q (z(ts)) . (37)

We use the jump strategy (8) to update the value of x̂(t+c ). Hence,
‖z(t+c )‖ = ‖z(tc)− z̄(tc)‖ holds. At the sensor, the packet size
g(ts) is chosen to be large enough such that

‖z(t+c )‖ = ‖z(tc)− z̄(tc)‖ ≤ ρ0J, (38)

(where 0 < ρ0 < 1 is a design parameter) is satisfied for all
tc ∈ [ts, ts + γ]. Figure 4 shows a typical realization of z(t) un-
der the proposed event-triggered strategy before and after one
event. The notion of ISpS remains the same as in Definition 4 by
replacing absolute value with complex absolute value.

c

+

(a) (b)

Fig. 4. (a) The blue curve shows the evolution of the state estimation
error before and after an event. The trajectory starts with an initial state
inside a circle of radius J , and continues spiraling (due to the imaginary
part of A) until it hits the triggering threshold radius J . Then it jumps
back inside the circle after the update according to (37) and jump
strategy (8). During inter-reception time intervals, ż(t) = Az(t) + w(t),
and the observed overshoot beyond the circle is due to the delay in the
communication channel. Here, A = 0.3+2i, B = 0.2, u(t) = −8x̂(t),
M = 0.2, γ = 0.05 sec, ρ0 = 0.9 and J = 0.0173. (b) Estimation of
the phase angle after event and transmission of λ bits.

Remark 20 Similarly to Proposition 8, one can show that if (38)
occurs at all reception times and (A,B) is a stabilizable pair,
then under the control rule u(t) = −Kx̂(t), the plant (35) is
ISpS, provided the real part of A−BK is negative. As a conse-
quence of this observation, our analysis focues on ensuring (38)
at each reception time. The lower bound on the inter-event time
of Lemma 7 and the upper bound on the triggering rate (15) also
holds replacing A by Re(A) for the complex plant. •

5.2 Sufficient information transmission rate

In this section, we design a quantization policy that, using the
event-triggered controller of Section 5.1, ensures the plant (35)
is ISpS. We rely on this design to establish a sufficient bound on
the information transmission rate.

5.2.1 Design of quantization policy

We devote the first λ bits of the packet p(ts) for quantizing the
phase of z(ts). The proposed encoding algorithm uniformly quan-

tizes the circle into 2λ pieces of 2π/2λ radians. After reception,
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the decoder finds the correct phase quantization cell and selects
its center point as φq(z(ts)). By letting ω = φz(ts) − φq(z(ts)), as

depicted in Figure 4, geometrically we deduce |ω| ≤ π/2λ. Fur-
thermore, we use the encoding scheme proposed in Figure 2 to ap-
pend a quantized version of triggering time ts of length g(ts)−λ
to the packet p(ts). Hence, we have p(ts)[λ+1] = mod

(

⌊ ts
bγ ⌋, 2

)

.

For the remaining bits of the packet, the encoder breaks the in-

terval containing ts into 2g(ts)−λ−1 equal sub-intervals. Once the
packet is complete, it is transmitted to the controller, where it is
decoded and the center point of the smallest sub-interval is se-
lected as the best estimate of ts. Therefore,

|ts − q(ts)| ≤ bγ/2g(ts)−λ. (39)

Note that, given tk+1
s , one can identify q(tk+1

s ) deterministically.
Also, using the first λ bits of the packet, the sensor can find the
value of φq(z(ts)). Consequently, similar to Proposition 9, if the
sensor has a causal knowledge of the delay in the communication
channel, it can calculate the state estimation x̂(t) for all time t.

5.2.2 Sufficient packet size

Here we show that with a sufficiently large packet size, we can
achieve (38) at all reception times {tkc}k∈N using the quantization
policy designed in Section 5.2.1. The proof of the next result is
in Appendix D.

Theorem 21 Consider the plant-sensor-channel-controller
model with plant dynamics (35), estimator dynamics (4),
triggering strategy (36), and jump strategy (8). Assume
‖z(0)‖ = ‖x(0) − x̂(0)‖ < J , then the quantization policy de-

signed above achieves (38) for all reception times {tkc}k∈N with
any packet size lower bounded by

g(ts) ≥ ḡ , (40)

max















0, λ+ log
Re(A)bγ

ln

(

1+e−Re(A)γ
(

ρ0−
M

Re(A)J (eRe(A)γ−1)
)

2 sin(π/2λ+1)+1+
√

2ζ

)















,

provided cos
(

Im(A)
(

ts − q(ts)
)

)

= 1− ζ , b > 1,

ρ0 ≥ (41a)

M

Re(A)J

(

eRe(A)γ − 1
)

+ eRe(A)γ
(

2 sin(π/2λ+1) +
√

2ζ
)

,

J ≥ M

Re(A)χ

(

eRe(A)γ − 1
)

,
√

2ζeRe(A)γ ≤ χ′, (41b)

λ > log

(

π
/

arcsin

(

1− χ− χ′

2eRe(A)γ

))

− 1, (41c)

where 0 < χ+ χ′ < 1.

Combining the bound on the triggering rate from Remark 20 with
Theorem 21, it follows that there exists an information transmis-
sion rate with

Rs ≤ Re(A)ḡ
/

ln

(

J Re(A) +M

ρ0J Re(A) +M

)

, (42)

that achieves (38) for all reception times {tkc}k∈N, and is there-
fore, sufficient to ensure (35) is ISpS. Figure 5 shows the suffi-

cient information transmission rate in (42) as a function of the
upper bound γ on the channel delay. One can observe that for
small values of the delay, the sufficient information transmission
rate is smaller than the rate required by the data-rate result in
Theorem 19, and as the delay upper bound γ increases, the suf-
ficient information transmission rate increases accordingly.
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Fig. 5. Sufficient information transmission rate (42) as a function of
channel delay upper bound γ. Here A = 1 + i, B = 0.5, M = 0.1,

ρ0 = 0.9 and b = 1.0001. Also λ = log
(

π/2 arcsin( 7
8
)eRe(A)γ

)

and

J = 8M
Re(A)

(

eRe(A)γ − 1
)

+ 0.002. The rate dictated by the data-rate

theorem (cf. Theorem 19) is 2Re(A)/ ln 2 = 2.885.

Remark 22 Depending on whether the system is real or com-
plex, the corresponding triggering criterion is based on the real
or complex absolute value, resp., cf. (7) and (36). The controller
needs to approximate the phase at which the state estimation er-
ror z(ts) hits the triggering radius. The real case is a particular
case of our complex results, since the phase of z(ts) is then ei-
ther 0 or π. Thus, for the real case, in our sufficient design, only
the first bits of the packet p(ts) denote the sign of z(ts). On the
other hand, in the complex case, we devote the first λ bits of
the packet p(ts) for quantizing the phase of z(ts). By putting
A = Re(A), λ = 1, and Im(A) = 0 (or ζ = 0), our sufficient
condition for complex systems (42), becomes equal to (21) ex-

cept a factor 1 +
√
2, which makes (42) larger than (21). The

reason for the difference is (D.4), where we find an upper bound
on the estimation error of the phase of z(ts). In the real case, the
controller deduces z(ts) = J or z(ts) = −J , and the estimation
error of the phase of z(ts) is zero. •

6 Simulations

This section presents simulation results validating the pro-
posed event-triggered control scheme for real-valued plants (the
interested reader can find simulations for a complex-valued
plant in [Khojasteh et al., 2018b]). While our analysis is for
continuous-time plants, we perform the simulations in discrete
time with a small sampling time δ′ > 0. Thus, the minimum up-
per bound for the channel delay is equal to two sampling times
in the digital environment (this is because a delay of at most one
sampling time might occur from the time that triggering occurs
to the time that the sensor took a sample from the plant state
and another delay of at most one sampling time might occur
from the time that the packet is received to the time the control
input is applied to the plant). We consider a linearized version
of the two-dimensional problem of balancing an inverted pen-
dulum mounted on a cart, where the motion of the pendulum
is constrained in a plane and its position can be measured by
an angle θ. The inverted pendulum has mass m1, length l, and
moment of inertia I . Also, the pendulum is mounted on top
of a cart of mass m2, constrained to move in y direction. The
nonlinear equations governing the motion of the cart and pen-

dulum are (m1 + m2)ÿ + νẏ +m1lθ̈ cos θ −m1lθ̇
2 sin θ = F

9



and (I + m1l
2)θ̈ + m1g0lsinθ = −m1lÿcosθ, where ν is the

damping coefficient between the pendulum and the cart and g0
is the gravitational acceleration. We define θ = π as the equilib-
rium position of the pendulum and φ as small deviations from θ.
We derive the linearized equations of motion using small angle
approximation, noting that this linearizion is only valid for suf-
ficiently small values of the delay upper bound γ. Define the

state variable s = [y, ẏ, φ, φ̇]T , where y and ẏ are the position
and velocity of the cart respectively. Assuming m1 = 0.2 kg,
m2 = 0.5 kg, ν = 0.1 N/m/s, l = 0.3 m, I = 0.006 kg/m2, one
can write the evolution of s in time as

ṡ = As(t) +Bu(t) + w(t), (43)

where

A =















0 1 0 0

0 −0.1818 2.6730 0

0 0 0 1

0 −0.4545 31.1800 0















, B =















0

1.8180

0

4.5450















.

In addition, we add the plant noise w(t) ∈ R4 to the linearized
plant model, and we assume that all of its elements are upper
bounded by M . A simple feedback control law can be derived
for (43) as u = −Ks, where K = [−1.00 − 2.04 20.36 3.93].
is chosen such that A−BK is Hurwitz.

The eigenvalues of the open-loop gain of the plant A are e =
[0 − 5.6041 − 0.1428 5.5651]. Thus, the open-loop gain of the
plantA is diagonalizable (all eigenvalues ofA are distinct). Using
the eigenvector matrix P , we diagonalize the plant to obtain

˙̃s = Ãs̃(t) + B̃ũ(t) + w̃(t), (44)

where

Ã =















0 0 0 0

0 −5.6041 0 0

0 0 −0.1428 0

0 0 0 5.5651















, B̃ =















10.0000

−2.3865

10.0979

2.2513















,

where s̃(t) = P−1s(t) and w̃(t) = P−1w(t). Also, ũ(t) =

−K̃s̃(t) where K̃ = KP . For the first three coordinates of the
diagonalized plant in (44) the state estimation ŝ at the controller

simply constructs as ˙̂si = Ãiŝ(t) + B̃iũ(t), starting from ŝi(0)

for i ∈ {1, 2, 3}, where Ãi and B̃i denote the ith row of Ã and B̃.
Since the first three eigenvalues ofA are non-negative, they are in-
herently stable. Thus, by the data theorem [Sharon and Liberzon,
2012] there is no need to use the communication channel for
them, and since Ã − B̃K̃ is Hurwitz, ũ(t) = −K̃s̃(t) renders
them ISS with respect to system disturbances. Now we apply
Theorem 11 to the fourth mode of the plant, which is unstable,
to make the whole plant ISpS. Using the problem formulation in
Section 2, the estimated state for the unstable mode ŝ4 evolves
during the inter-reception times as

˙̂s4(t) = 5.5651ŝ4(t) + 2.2513ũ(t), t ∈ (tkc , t
k+1
c ), (45)

starting from ŝ4(t
k+
c ) and ŝ4(0). Also, a triggering occurs when

|z̃4(t)| = |s̃4(t) − ŝ4(t)| = J , where |z̃4(t)| is the estate esti-
mation error for the unstable mode, and assuming the previous
packet is already delivered to the controller. In the simulation
environment, since the sampling time is small, a triggering hap-
pens as soon as |z̃4(t)| is equal or greater than J and the previous
packet has been recived by the controller. Let λ4 = 5.5651 be the
eigenvalue corresponding to the unstable mode. By Theorem 11,
we choose J = (M/(λ4ρ0))(e

λ4γ − 1) + 0.005, and the size of
the packet for all ts to be (22), where b = 1.0001 and ρ0 = 0.9.
We use the packet size given in (22) for the simulations.
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Fig. 6. Simulation results for linearized inverted pendulum on a cart
example. (a) shows the evolution of the absolute value of the state es-
timation error (a) for the unstable mode of the plant in (44). (b) shows
the evolution of the unstable state in (44) and its estimate in (45). (c)
shows the evolution of all the states in (43). (d) shows the information
transmission rate in the simulation as compared to the data-rate theorem.
Note that the rate does not start at γ = 0 because the minimum channel
delay upper bound is equal to two sampling time (0.005 seconds in this
example). The simulation parameters are s̃(0) = P−1[0, 0, 0, 0.1001]T ,

ŝ(0) = P−1[0, 0, 0, 0.10]T , simulation time T = 5 seconds, and sam-
pling time δ′ = 0.005 seconds, For (a)-(c), γ = 0.1 sec, g(ts) = 4 bits,
M = 0.05, and in (d) g(ts) is calculated using (22) with M = 0.2.

Figure 6(a) shows the triggering function for s̃4 in (44) and the
absolute value of the state estimation error for the unstable coor-
dinate, that is, |z̃4(t)| = |s̃4(t) − ŝ4(t)|. As soon as the absolute
value of this error is equal or greater than the triggering function,
the sensor transmits a packet, and the jumping strategy adjusts
ŝ4 at the reception time to ensure the plant is ISpS. Note that
the amount this error exceeds the triggering function depends
on the random channel delay upper bounded by γ. Figure 6(b)
presents the evolution of the unstable state in (44) and its esti-
mation in (45). Figure 6(c) shows the evolution of all the actual
states of the linearized plant (43). Finally, Figure 6(d) presents
the simulation of information transmission rate versus the delay
upper bound γ in the communication channel for stabilizing the
linearized model of the inverted pendulum. It can be seen that for
small γ, the plant is ISpS with an information transmission rate
smaller than the one prescribed by the data-rate theorem.

7 Conclusions

We have presented an event-triggered control scheme for the
stabilization of noisy, scalar real and complex, continuous, lin-
ear time-invariant systems over a communication channel subject

10



to random bounded delay. We have developed an algorithm for
encoding-decoding the quantized version of the estimated state,
leading to the characterization of a sufficient transmission rate
for stabilizing these systems. We also identified a necessary con-
dition on the transmission rate for real systems. Future work will
study the identification of necessary conditions on the transmis-
sion rate in complex systems, develop event-triggered designs for
vector systems with real and complex eigenvalues, and perform
experiments with the proposed controllers in practical scenarios.
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A Proof of Proposition 9

PROOF. The proof is based on induction. Using x̂(0) sensor can
construct the value of x̂(t) for t ∈ (0, t1c) according to (4). Note
that we are using the proposed quantizer in Figure 2, hence given
t1s , q(t1s) gets identified deterministically. Consequently, given t1c
and using (17), the sensor constructs the value of z(t1+c ) and it
determines the value of x̂(t1+c ).

Now assuming that the sensor is aware of the value of x̂(tk+c ) we

will prove that the sensor can find the value of x̂(t
(k+1)+
c ) too.

Since the sensor is aware of the x̂(tk+c ) and it knows that x̂(t)
evolves according to (4) for t ∈ (tkc , t

k+1
c ) starting from x̂(tk+c )

sensor can calculate all the values of x̂(t) until tk+1
c . Using our

proposed quantizer and given tk+1
s , q(tk+1

s ) can be identified

deterministically, therefore by knowing the value of (k + 1)th

delay the sensor can calculate the value of z̄(t
(k+1)+
c ) from (17).

Then using the jump strategy (8) it can calculate x̂(t
(k+1)+
c ). So

the result follows. ✷

B Proof of Lemma 17

PROOF. Without loss of generality assume that z(ts) = J
throughout this proof. We also consider the realization of w(t) =
M for all time t. We first show β is the time needed for the state
estimation error to grow from z(ts) to z(ts)+2J . From (11), we
deduce at delay β we have

z(tc) = eAβJ + (M/A)
(

eAβ − 1
)

. (B.1)

By combining (B.1), the bound on β, and z(ts) = J it follows
z(tc) = z(ts) + 2J . Hence, the value of z(tc) sweeps an area of
measure 2J when the delay takes values in [0, β].

We continue by distinguishing between two classes of quantiza-
tion cells. We call a quantization cell perfect, if its measure is
equal to 2J , and when the measure of a quantization cell is less
than 2J we call it defective. Using these definitions we now prove
the occurrence of (32) with delay of at most β, in three different
cases. First, when z(ts) is in a perfect cell, clearly for a delay

of at most β we have |z(tkc ) − z̄(tkc )| ≥ J , and (32) follows.
Second, when z(ts) is in a defective cell which is adjacent to a
perfect cell, for a delay of at most β the value of z(tc) sweeps
the area of the defective cell and z(tc) inters the adjacent perfect

cell. Thus, with delay at most β we have |z(tkc )− z̄(tkc )| ≥ J/2,

where z̄(tkc ) is the center of the adjacent perfect cell with radius
J , and (32) follows. It remains to check the assertion when z(ts)
is in a defective quantization cell which is adjacent to another
defective quantization cell. Due to the restriction on the quantiza-
tion policies as in Assumption 16, the sensor transmits the mini-
mum required bits to divide the uncertainty set at the controller
to quantization cell of measure of at most 2J . If the measure of
union of two adjacent cells is at most 2J , these two balls could be
replaced by one quantization cell to reduce the number of quan-
tization cells. As a consequence, under Assumption 16, the mea-
sure of union of two adjacent quantization cells is greater than
2J . Assume the defective quantization cell that contain z(ts) is
of the measure µ1 and the measure of the adjacent defective cell
is µ2. As a result, we have µ1+µ2 > 2J . Therefore, at least one
of the µ1 or µ2 is at least J , thus with a delay of at most β, we
have |z(tkc )− z̄(tkc )| ≥ J/2, and (32) follows. ✷

C Proof of Theorem 19

PROOF. It is enough to prove the assertion when w(t) = 0.

By rewriting (35) when w(t) = 0 we have ˙Re(x) + i ˙Im(x) =
Re(A)Re(x)−Im(A) Im(x)+i(Re(A) Im(x)+Im(A)Re(X)),
which is equivalent to

[

˙Re(x)

˙Im(x)

]

=

[

Re(A) − Im(A)

Im(A) Re(A)

][

Re(x)(t)

Im(x)(t)

]

.

Since ‖x‖ =
√

Re(x)2 + Im(x)2, if Re(x) or Im(x) be-
comes unbounded, ‖x‖ becomes unbounded. Consequently,
using [Hespanha et al., 2002, Theorem 1], we need to have

Rc ≥ tr

([

Re(A) − Im(A)

Im(A) Re(A)

])

/ ln 2. ✷

D Proof of Theorem 21

PROOF. In our design, the controller estimates z(tc) as in (37),
and the encoding-decoding scheme is as depicted in Figures 2
and 4. Using (11), (37), and the triangle inequality, it follows

‖z(tc)− z̄(tc)‖ ≤ (D.1)
∥

∥

∥

(

eA(tc−ts)z(ts)− eA(tc−q(ts))q (z(ts))
)∥

∥

∥

+

∥

∥

∥

∥

∫ tc

ts

eA(tc−τ)w(τ)dτ

∥

∥

∥

∥

.

Similarly to (12), since ‖w(t)‖ ≤ M , the second summand
in (D.1) is upper bounded as

∥

∥

∥

∥

∫ tc

ts

eA(tc−τ)w(τ)dτ

∥

∥

∥

∥

≤ M

Re(A)

(

eRe(A)γ − 1
)

. (D.2)

To find a proper upper bound on the first summand in (D.1),
assuming q (z(ts)) = z(ts)− v1 and q(ts) = ts − v2, we have

∥

∥

∥eAtc
(

e−Atsz(ts)− eAq(ts)q (z(ts))
)∥

∥

∥ = (D.3)
∥

∥

∥
eA(tc−ts)

(

z(ts)− eAv2 (z(ts)− v1)
)

∥

∥

∥
≤

eRe(A)γ
(

J‖1− eAv2‖+ eRe(A)v2 ‖v1‖
)

.

Next, we find an upper bound of ‖v1‖. Since the sensor devotes
λ bits to transmit a quantized version of the phase of z(ts) to

the controller, we have the upper bound |ω| ≤ π/2λ on the
difference of the phases of z(ts) and q(z(ts)). Also, over [−π, π],
the cosine function is concave, with global maximum at 0. Hence,
as depicted in Figure 4, from the law of cosines, we have

‖v1‖ = ‖z(ts)− q (z(ts)) ‖ ≤ (D.4)
√

2J2(1 − cos(π/2λ)) = 2J sin(π/2λ+1).
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Combining this with (D.3), the first summand in (D.1) is upper
bounded by

JeRe(A)γ
(

‖1− eAv2‖+ 2eRe(A)v2 sin(π/2λ+1)
)

.

Note that ‖1 − eAv2‖2 = (1 − eRe(A)v2)2 + 2eRe(A)v2ζ, where
cos(Im(A)v2) = 1− ζ, and 0 ≤ ζ ≤ 2. Thus, the first summand
in (D.1) is upper bounded by

JeRe(A)γ
(

|1− eRe(A)v2 |+
√

2eRe(A)v2ζ+

2eRe(A)v2 sin(π/2λ+1)
)

.

For any positive real number ǫ we know ǫ + 1/ǫ ≥ 2, hence,

eRe(A)v2 − 1 ≥ 1 − e−Re(A)v2 . Therefore, for the rest of the
proof, and without loss of generality, we assume v2 ≥ 0, and the
first summand in (D.1) is upper bounded by

JeRe(A)γ
(

eRe(A)v2 − 1 +
√

2ζeRe(A)v2+ (D.5)

2eRe(A)v2 sin(π/2λ+1)
)

.

Combining (D.1), (D.2), and (D.5) we deduce

eRe(A)v2 ≤ (D.6)

1 + e−Re(A)γ
(

ρ0 − M
Re(A)J

(

eRe(A)γ − 1
)

)

2 sin(π/2λ+1) + 1 +
√
2ζ

which suffices to ensure (38). Recalling v2 = ts − q(ts), us-
ing (39) and by setting

bγ

2g(ts)−λ
≤

1

Re(A)
ln





1 + e−Re(A)γ
(

ρ0 − M
Re(A)J

(

eRe(A)γ − 1
)

)

2 sin(π/2λ+1) + 1 +
√
2ζ



 ,

(D.6) is ensured. Consequently, the packet size in (40) is sufficient
to ensure (38) for all reception times. However, (D.6) is well
defined only when the upper bound in (D.6) is at least one, namely

e−Re(A)γ

(

ρ0 −
M

Re(A)J

(

eRe(A)γ − 1
)

)

≥

2 sin(π/2λ+1) +
√

2ζ,

which holds because of (41a). Moreover, the design parameter
ρ0 in (38) should be in the open interval (0, 1). Therefore, the
lower bound in (41a) should be smaller than 1, namely

M

Re(A)J

(

eRe(A)γ − 1
)

+ eRe(A)γ(2 sin(π/2λ+1) +
√

2ζ) < 1.

The result now follows by noting that (41b), and (41c) ensure
this inequality holds. ✷
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