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Abstract - This paper presents modelling, control and simulation results of an unmanned aerial vehicle (UAV) with only one fixed 

motor spinning a tilted propeller called “Monospinner”. This class of rotary-wing UAVs is gaining some significant attention since 

they can lead to the design and development of control strategies for safe landing in case of one single or multiple rotor failure. 

Furthermore, the studies on monospinners can lead to the development of the most energy-efficient rotary wing UAVs with a potential 

to render themselves as high-endurance flying machines. In a monospinner, unlike most flying vehicles with rotary wings, hovering is 

defined as maintaining the altitude while rotating about an axis that is fixed with respect to the vehicle. Therefore, not all degrees of 

motion can be fully controlled. However, the remaining controllable states of the machine will be good enough to maintain a stable 

altitude, or even to track a trajectory. For this purpose, a linear time-invariant system is derived for controlling the attitude. It is shown 

that by controlling the attitude, the direction of that fixed axis of rotation (i.e., a precession axis) can be controlled by which the altitude 

of the vehicle can be kept at constant. A complete aerodynamic model of the propeller experiencing fast rotations about the precession 

axis is presented for the first time followed by analysing the effect a tilting rotor can have on the total power required to maintain a 

constant altitude. The proposed dynamic model and the design were evaluated via a nonlinear simulation system.  

 

Keywords: Unmanned flying vehicles, minimum power flight, propeller, tilting rotors, monospinner, stable flight despite 

rotor failure. 

 

 

1. Introduction 
Unmanned Aerial Vehicles (UAVs) have been one of the most popular research topics in recent years. A special type 

of these vehicles with four motors, known as quadcopters, has gained more attention among roboticists due to their 

mechanical simplicity. These flying vehicles have been used in a variety of applications such as: inspection of 

infrastructures, object delivery, precision agriculture and even sports [1]- [3].  

One class of small-scale UAVs with rotary wing widely studied falls under the Quadcopters category. Although 

quadcopters with four actuators are fairly simple to design, but they don’t offer a minimalistic design. For example, 

Samara-type vehicle is a flying machine, inspired form the way a maple seed flies in the air, that has only two actuators. Its 

attitude is controlled passively and its position can be controlled by an aerodynamic control surface [4]. The propulsive 

force is generated by adding a propeller to the system. An example of a Samara-type vehicle can be found in [5].  

Flapping wing vehicles with one or two actuators are another example of under-actuated flying vehicles. Like Samara-

type vehicles, the attitude is controller passively and the position can be controlled by the two actuators [6]. In position 

control for flapping wing vehicles with only one actuator, only altitude can be controlled [7].  

In multicopters, it can be shown that by using less than four actuators, three translational and two rotational degrees of 

freedom can still be controlled. In [8], control of quadcopters in case of one, two and three rotor failures were presented. In 

case of three rotor failures, it can be said that one can achieve the simplest design for under-actuated flying vehicles while 

having control over position and two rotational degrees of freedom. In [9], a flying vehicle with a single rotor was 

presented for the first time.   
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In this paper, modelling and control of a flying vehicle with only one motor and one propeller is presented. 

Because of the unbalanced torque in the system (i.e., the gravitational force, thrust, and reaction forces don’t intersect), 

the vehicle will go through a fast rotational motion about a fixed axis. This rotational motion affects the performance 

of the propeller which is fully investigated in this paper for the first time.  

The relationship between the required motor power to maintain a hover when tilting the rotor about the x-axis of 

the body frame (see Fig. 1) and the tilting angle of the robot was calculated for the first time as well. The nonlinear 

equations of rotational motion are then linearized around the optimal-power hover solution and a controller is designed 

to maintain the attitude, hence controlling the position of the vehicle. Finally, the results were validated via 

simulations.   

This paper is organized as follows: In section 2, mathematical modelling and control strategy are presented 

including the effects of the fast rotational motion on propeller performance and the effects of tilting the motor about x-

axis of the body frame. Simulation results and optimal-power hover solution are presented in section 3. Finally, 

conclusions and future works are presented in section 4.  

 

 

 
Fig. 1: a) A quadcopter with four motors, b) Unmanned flying vehicle with rotor (monospinner). Body frame is shown in red, b) The 

propeller angular velocity is negative and its reaction torque is positive. Because of the tilting angle of the motor, it also generates a 

positive moment about z-axis of the body frame as shown in green, c) The motor is tilted by alpha radians about x-axis. 

 

2. Mathematical Modelling & Control 
In this section mathematical modelling and control of the Monospinner are presented. Equations governing 

rotational motion are presented followed by equations of translational motion and a complete model for propeller’s 

dynamics in presence of freestream velocity. Using nonlinear equations of motion, the equilibrium point is found for 

hovering. Nonlinear equations are then linearized around the equilibrium point. At the end, cascaded controller 

structure is used to control attitude and position of the vehicle.  

 

2.1. Notation 
Throughout this paper, straight boldface R is used for rotation matrices and vectors are shown in boldface 

italicized letters. Transformation from frame 𝐴 to frame 𝐵 is represented as 𝐑𝐴
𝐵 . Boldface and non-boldface symbols 

are used to denote vectors and scalars respectively. The term  𝜔𝐵
𝐵  denotes that 𝜔 is a property of 𝐵 and is expressed 

in frame 𝐵. Top right superscript as in 𝜔𝐵 indicates that 𝜔 belongs to 𝐵. The vehicle angular velocity vector is shown 

as 𝝎𝐵 = (𝑝, 𝑞, 𝑟)𝑇 where 𝑝, 𝑞 and 𝑟 are roll, pitch and yaw rates respectively. An overbar is used to indicate 

equilibrium values. Norm of a vector is shown by |. |.  
 

2.2. Dynamic Model  
Two coordinate frames are used for modelling. An inertial frame 𝐼 that is attached to the earth and a body frame 𝐵 

that is attached to the centre of mass of the vehicle. The vehicle has a mass of 𝑚 and the motor is located at distance 𝑙 
from the centre of mass of the vehicle. The motor is also tilted about x-axis of the body frame by 𝛼 radians such that 

the propeller generates a thrust force 𝒇 with components in y and z directions of the body frame. The position of the 

centre of mass of the vehicle in inertial frame is shown as 𝒅 and earth gravitational acceleration is shown as 𝒈. Using 

Newton’s second law, the equations of translational motion can be written as follows:  

𝑥𝐵 

𝑦𝐵 

𝑧𝐵 

𝜔1 

𝛼 

(𝑎) (𝑏) (𝑐) 
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𝑚�̈� = 𝐑𝐵
𝐼 𝒇 + 𝑚𝒈 (1) 

 

In (1), we assume that translational velocity of the centre of mass of the vehicle is low and thus, the drag due to this 

translational motion can be neglected. The geometry of the vehicle is assumed to be symmetric with a diagonal moment of 

inertia matrix as IB=diag(Ixx,Iyy,Izz). The moment of inertia of the propeller is also represented by 𝐼𝑝 = diag(Ixx
p

, Iyy
p

, Izz
p

) 

and is approximated by the moment of inertia of a disk which is also symmetric about propeller’s axis of rotation.  

The equation of rotational motion can be written as:  

 

𝐼𝐵�̇�𝐵 + 𝐼𝑝�̇�𝑝 + 𝑠𝑘(𝝎𝐵)(𝐼𝐵𝝎𝐵 + 𝐼𝑝(𝝎𝑝 + 𝝎𝐵)) = 𝝉𝑡𝑜𝑡 (2) 

 

In the left hand side of (2), the first two terms are the moments generated by angular acceleration of the body and the 

propeller. The third term represents cross-coupling effects of the angular momentum in the system. 𝑠𝑘(𝝎𝐵) is the skew 

symmetric matrix of body angular rates vector 𝝎𝐵. Since 𝐼𝑝 ≪ 𝐼𝐵, the second term in (2) can be neglected. In the right 

hand side,  𝝉𝑡𝑜𝑡 is the summation of the moments due to propeller thrust force, reaction moment of the propeller as 

𝝉𝑝
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛, aerodynamic drag in rotational motion as 𝝉𝑑 and the moment due to unsymmetrical distribution of thrust 

between the advancing and retreating blades of the propeller as 𝝉𝑝. Since yaw is the dominant rotational motion, 𝝉𝑑 is 

considered only to oppose yaw motion and is assumed to be proportional to yaw rate with coefficient 𝛽 as follows:  

 

𝝉𝑑 = (0,0, −𝛽𝑟)𝑇 (3) 

 

Equations (1) and (3) can be combined and rewritten as follows:   

 

𝑚 [

�̈�1

�̈�2

�̈�3

] = 𝐑𝐵
𝐼 [

0
𝑓𝑠𝑖𝑛(𝛼)
𝑓𝑐𝑜𝑠(𝛼)

] + 𝑚 [
0
0

−9.81
] 

𝐼𝑥𝑥�̇� = −𝑞𝑟(𝐼𝑧𝑧 − 𝐼𝑥𝑥) − 𝐼𝑧𝑧
𝑝

𝑞𝜔1 

𝐼𝑦𝑦�̇� = −𝑓𝑐𝑜𝑠(𝛼)𝑙 + 𝑝𝑟(𝐼𝑧𝑧 − 𝐼𝑥𝑥) + 𝐼𝑧𝑧
𝑝

𝑝𝜔1 + 𝜏𝑝 

𝐼𝑧𝑧�̇� = 𝜏𝑝
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 + 𝑓𝑠𝑖𝑛(𝛼)𝑙 − 𝛽𝑟 

(4) 

 

Where 𝜔1 is the angular velocity of the propeller. 𝜏𝑝
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 is the reaction moment of the propeller. The reaction 

moment of the propeller is assumed to be proportional to thrust force and in the opposite direction of rotation of the 

propeller with a constant 𝑘𝜏 as follows:  

 

𝜏𝑝
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = −𝑠𝑖𝑔𝑛(𝜔1)𝑘𝜏𝑓 (5) 

 

2.3. Propeller’s Dynamics in Presence of Freestream Velocity 
Freestream velocity, represented by 𝑉∞, could have significant effects on performance of propellers. In the presence of 

none-zero freestream velocity, as the propeller is turning, the velocity of local air flow over the blades can be increased or 

decreased by 𝑉∞ depending on the azimuth of the blades. As a result, the thrust force of the advancing blade would be 

different from that of the retreating blade which generates a moment. Our goal is to find the thrust force and moment of the 

propeller as a function of propeller and flow properties and freestream velocity. Blade element theory is used to calculate 

thrust force and moment of a blade element (small hashed area in Fig. 2 (b)) and by integrating them over all elements and 

azimuth angles, total thrust force and moment of the propeller can be calculated [10].  

In Fig. 2 (b), a propeller with chord 𝑐 and blade radius of 𝑅𝑏 is turning counter-clockwise with angular velocity 𝜔 and 

there is a freestream velocity 𝑉∞ (𝑚/𝑠) as shown with red arrows. The propeller azimuth 𝜓𝑝, is defined as the angle 

between the blade radius and the direction of freestream velocity. For a blade element of width 𝑑𝑟𝑏 and length 𝑐 (the chord 

of the aerofoil) as shown in Fig. 2 (b), thrust force can be written as 𝑑𝑓 =
1

2
𝜌𝑐𝐶𝐿𝑣2𝑑𝑟𝑏.  
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Where 𝜌 is the air density, 𝑣 is the resultant air flow velocity over the blade element at distance 𝑟𝑏 from the 

propeller axis of rotation (that is the resultant of velocity due to the rotation of the propeller and freestream velocity) 

and 𝐶𝐿 is the aerodynamic lift coefficient. It is also assumed that the blade chord is constant along the blade radius.  

The freestream velocity affects the resultant air flow velocity over the blade element. For the advancing blade 

(when 0 ≤ 𝜓𝑝 ≤ 𝜋), the air flow velocity increases by 𝑉∞ while it decreases by 𝑉∞ for the retreating blade (when 

𝜋 ≤ 𝜓𝑝 ≤ 2𝜋). This inequality in air flow velocity over blade element generates a moment in the direction of 

freestream velocity 𝑉∞ and affects total thrust force of the propeller. Thrust force for a blade element can be rewritten 

as follows:  

 

𝑑𝑓 = (
1

2
𝜌𝑐𝐶𝐿(𝑟𝑏𝜔 + 𝑉∞sin𝜓𝑝)2) 𝑑𝑟𝑏 (6) 

 

By integrating (6) over blade radius and azimuth angle and multiplying by 2 (assuming each propeller has two blades), 

we can calculate average thrust force of the propeller and likewise the produced moment as a function of propeller’s 

angular velocity and freestream velocity as follows:  

 

𝑓 =
1

2
𝜌𝑐𝐶𝐿 (

2𝑅𝑏
3

3
𝜔2 + 𝑉∞

2𝑅)                    𝜏𝑝 =
1

3
𝜌𝑐𝐶𝐿𝑅𝑏

3𝜔𝑉∞ (7) 

  

 

   
Fig. 2: a) Effects of freestream velocity on propeller’s performance. Freestream velocity is shown in green and the propeller is turning 

clockwise as shown in blue. The asymmetrical lift distribution over the propeller, generates a positive pitch moment which could help 

to stabilize pitch motion. This moment is significant when the vehicle yaws very fast.  b) Propeller turning counter-clockwise with 

angular velocity 𝜔 and freestream velocity is 𝑉∞. 

 

   
Fig. 3: Effects of having freestream velocity for a propeller with 𝑐 = 0.03 𝑚, 𝐶𝐿 = 1.022, 𝑅𝑏 = 0.08 𝑚, 𝑉∞ = 10 𝑚/𝑠, 𝜌 =

1.225 𝑘𝑔/𝑚3 and 𝜔 = 870 𝑟𝑎𝑑/𝑠. a) Thrust force of the propeller, b) Moment of the propeller due unsymmetrical lift. 

 

𝑥𝐵 

𝑦𝐵 

𝑧𝐵 

𝜔1 

𝑉∞ 

𝜏𝑝 

𝜔 
𝑟𝑏𝜔 

𝑟𝑏𝜔 

𝑉∞ 

𝜓𝑝 

𝑅𝑏 

𝑑𝑟𝑏 

𝑐 

(𝑎) (𝑏) 

(𝑎) (𝑏) 
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When the propeller is turning and freestream velocity is zero, 𝜏𝑝 would be zero and thrust force would be equal to 

𝑓 =
1

4
𝜌𝑐𝐶𝐿

2𝑅𝑏
3

3
𝜔2. These effects for a propeller with known aerodynamic properties are presented in Fig. 2.  

In order to see how thrust force and moment of the propeller change with azimuth angle, using (6) and (7), thrust force 

and moment of the propeller in one complete turn for 0 ≤ 𝜓𝑝 ≤ 2𝜋 are calculated. Fig. 3, shows the results of this 

calculation for a propeller turning with angular velocity of 𝜔 = 870 𝑟𝑎𝑑/𝑠 where there is a freestream velocity of 

𝑉∞ = 10 𝑚/𝑠. Fig. 3 (a) and Fig. 3 (b), show variations of the thrust force and moment of the propeller as a function of 

azimuth angle respectively. The red color shows the calculated values without considering the effects of V∞, the blue color 

shows calculated values with the effects of V∞ and the yellow color shows the average values when considering the effects 

of V∞. It can be seen that for 0 ≤ 𝜓𝑝 ≤ 𝜋, thrust force and moment are increased and for 𝜋 ≤ 𝜓𝑝 ≤ 2 they are decreased. 

The results show that the increase rate is more than decrease rate which is why the average values considering the effects 

of V∞ are higher than the values without considering the effects of V∞. In the above example, thrust force increases from 

4.95 N to 5.12 N and the moment increases from 0 N.m to 0.06 N.m.  

 

2.4. Control 
Before designing a controller, one should define the equilibrium state of the system. In regular flying modes, 

equilibrium in flight is defined as a hovering state, where all velocities and accelerations of the vehicle are at zero. This is 

only possible if all forces and moments in the system are balanced. In a flying vehicle with only one rotor, forces and 

moments are not balanced and as a result, one cannot maintain zero velocities and accelerations in all directions. However, 

a new equilibrium state can be defined such that, for instance, all the angular velocities are constant and linear velocities 

are bounded, but periodic. In this equilibrium state, a fixed axis can be found about which the vehicle will rotate with 

constant angular velocity. By controlling the direction of this axis, the position of the vehicle can be controlled.  

Let us denote this precession axis as 𝒏 and present it in the body frame. The evolution of this axis in time can be given 

as:   
 

�̇� = −𝝎𝐵 × 𝒏 (8) 

  

At equilibrium, we want 𝒏 to be constant, meaning that 𝒏 should be parallel to 𝝎𝐵. Therefore, by normalizing these 

vectors, the following condition must be met at the equilibrium state:   

 

�̇� = 0 →  |�̅�| = 𝜎|�̅�𝐵| = 1 (9) 

 

At equilibrium, in order to maintain altitude, a component of the thrust force in the periodic motion should be equal to 

weight of the vehicle and in the opposite direction of the gravity, which adds the following constraint to the system:  

 

𝑓̅cos𝛼|�̅�𝑧| = 𝑚|𝒈| (10) 

 

Finally, by setting angular accelerations to zero, using (4) and (8)- (10), we will have eight unknowns as 

�̅�, �̅�, �̅�, �̅�𝑥 , �̅�𝑦, �̅�𝑧, 𝜎, �̅�1 with eight algebraic equations. By solving this system of equations, we can find the equilibrium 

state of the vehicle. The tilting angle 𝛼, is a tuning parameter and we will discuss it in more details in the next section.  

Now, nonlinear equations of rotational motion can be linearized about this equilibrium point and a controller for the 

resulting linear time-invariant system can be designed. In order to controller the position of the vehicle, controlling 

horizontal components of 𝒏 is sufficient. For controlling altitude, the magnitude of the thrust force can be used. In this new 

equilibrium state, the vehicle is allowed to rotate about the fix axis 𝒏. By defining and controlling a new state variable 

𝜻 = (𝑝, 𝑞, 𝑛𝑥, 𝑛𝑦), the two degrees of rotational motion (pitch and roll) can be controlled and as a result, the horizontal 

components of 𝒏 can be controlled. Linearizing (4) and (8) about equilibrium state and choosing 𝛼 = 0, we can write the 

following first order differential equations for the deviation of 𝜻 from its equilibrium values �̅�:  

 

�̇̃� = 𝐴�̃� + 𝐵𝒖     ,       𝑢 = 𝑓̅ − 𝑓 (11) 
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Similar to other flying vehicles, an outer control loop can be designed for position control which generates 

reference signal for the inner attitude controller. This can be simply done by defining �̃� as the deviations of the 

position of the vehicle from the desired position. Finally, we can define the desired acceleration as a second order 

system with damping ratio 𝜉 and natural frequency 𝜔𝑛 as follows:  

 

�̈�𝑑𝑒𝑠 = −2𝜉𝜔𝑛�̇̃� − 𝜔𝑛
2�̇̃� (12) 

 

By calculating the desired acceleration and adding it to the gravity acceleration, total required acceleration is 

obtained. Now, using this total acceleration, the desired direction of 𝒏 can be calculated as the reference of the attitude 

controller.  

 

𝒏𝒅𝒆𝒔 =
𝑚 𝐑𝐵

𝑇𝐼 (�̈�𝑑𝑒𝑠 − 𝒈)

𝑓|�̅�𝑧|
 (13) 

 

3. Simulation Results 
In this section, simulation results for position control of a monospinner in four different scenarios are presented: 

1) with V∞=0 and tilting angle α=0; 3) with V∞=0 and non-zero tilting angle 𝛼; 3) with non-zero 𝑉∞ and tilting angle 

α=0; 4) with none-zero 𝑉∞ and 𝛼. Power consumption in these simulations are compared. In monospinner, since the 

vehicle goes through a fast yaw motion, it can be said that the propeller’s centre of mass goes through a rotation about 

the z-axis of the body frame and experiences an almost uniform freestream velocity which is approximately equal to 

𝑉∞ = �̅�𝑙 (where 𝑙 is the distance of the motor from the centre of mass of the vehicle). The direction of 𝑉∞ is the 

negative direction of y-axis of the body frame. This freestream velocity can be expressed in the body frame as 

𝑉∞ = (0, �̅��̅�1, 0)𝑇.  

From (7), as 𝑉∞ increases, 𝝉𝑝 increases which is in favor of balancing pitch moments. Also, since 𝑉∞ is 

proportional to the vehicle’s yaw rate at equilibrium. Therefore, higher yaw rate, which can be achieved by tilting the 

rotor, would be in favour of stabilizing the vehicle as well, meaning that we will need less control effort or less power 

to stabilize the system. Yaw rate, plays an important role and in fact this is the reason why we are tilting the rotor to 

increase yaw rate. We expect to see the highest power consumption in the first and second simulations and the lowest 

power consumption in the fourth simulation. At the end, the best value of α for optimal-power hover solution can be 

found.  

It is also important to mention that the second and fourth simulations are more realistic since they capture all 

aerodynamic effects present in the system. The first and third simulations are only provided for comparison and 

showing that the effects of freestream velocity are not negligible especially in the case where the rotor is tilted.   

A vehicle of mass 𝑚 = 0.5 𝑘𝑔, 𝐼𝑥𝑥 = 𝐼𝑦𝑦 = 3.2 × 10−3𝑘𝑔. 𝑚2, 𝐼𝑧𝑧 = 5.5 × 10−3 𝑘𝑔. 𝑚2, 𝑙 = 0.17 𝑚, 𝐼𝑧𝑧
𝑝

=

1.5 × 10−5 𝑘𝑔. 𝑚2, 𝛽 = 2.75 × 10−3, 𝑘𝜏 = 1.69 × 10−2 is used in the simulations. The propeller has 𝑐 = 0.03 𝑚, 

𝐶𝐿 = 1.022, 𝑅𝑏 = 0.08 𝑚. Air density is 𝜌 = 1.225 𝑘𝑔/𝑚3. LQR controller for the LTI system in (11) with 𝑄 =
𝑑𝑖𝑎𝑔(1,1,100,100) and 𝑅 = 10 as the weight matrices for attitude states and control input is designed. In position 

controller damping ratio 𝜉 = 0.5 and natural frequency 𝜔𝑛 = 0.5 are selected. To compare the simulation, power 

consumption of the motor is used. From [8], power consumption at equilibrium can be calculated as follows:  

 

�̅� = 𝜏𝑝
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛�̅�1 = −𝑠𝑖𝑔𝑛(�̅�1)𝑘𝜏𝑓�̅̅�1 (14) 

 

Table 1, shows equilibrium values for the simulations:  
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Table 1: Equilibrium values for the simulations. 

 

Simulation condition �̅�  (
𝑟𝑎𝑑

𝑠
) �̅�  (

𝑟𝑎𝑑

𝑠
) �̅�  (

𝑟𝑎𝑑

𝑠
) �̅�𝑥 �̅�𝑦 �̅�𝑧 �̅�1 (

𝑟𝑎𝑑

𝑠
) �̅� (𝑊) 

V∞=0 , α=0 14.6835 0 32.9938 0.4066 0 0.9136 -915.1880 83 

𝑉∞ = 5.6 , 𝛼 = 0 15.1884 0 33.1648 0.4163 0 0.9091 -913.4880 83.3 

𝑉∞ = 0 , 𝛼 = 0.1 6.5898 0 61.0706 0.1073 0 0.9942 -879.4980 73.6 

𝑉∞ = 10.4 , α=0.1 7.0300 0 61.1215 0.1142 0 0.9934 -865.3670 72.6 

  

Comparing the power in the above simulations shows the significance of the effects of freestream velocity and tilting angle 

of the rotor in reducing power consumption of the motor. By selecting 𝛼 as a tuning parameter we can find the best value 

of 𝛼 and consequently the best value of 𝑉∞ to find the minimum-power hover solution of the vehicle. The optimal-power 

solution is found when 𝛼 = 0.25 𝑟𝑎𝑑, 𝑉∞ = �̅�𝑙 = 18.46 𝑚/𝑠 and the resulting power consumption is �̅� = 72.1 𝑊.  

Simulation results for position control for flying from an initial position 𝑑0 = (0,0,10) to the desired position 𝑑𝑑𝑒𝑠 =
(0,5,10) are presented in Fig. 4 and Fig. 5. In Fig. 4 (a), the thrust force of the propeller as function of time is presented. 

Fig. 4 (b), presents the angular velocity of the propeller as a function of time. Steady state results are shown in Fig. 5. 

According to (14), power consumption of the motor is proportional to the thrust force multiplied by the angular velocity of 

the propeller. In Fig. 5 (b), it can be seen that as 𝛼 increases, the magnitude of angular velocity of the propeller decreases. 

From Fig. 5 (a), no specific correlation between 𝛼 and the thrust force can be found. The angular velocity of the propeller 

at minimum-power hover solution is found to be �̅�𝑚𝑖𝑛 = 842.846 𝑟𝑎𝑑/𝑠.  

The oscillations shown in Fig. 5, are due to the periodic motion of the vehicle and the effects of the freestream velocity 

on the thrust force of the propeller as also presented in Fig. 3.   

 

 
Fig. 4: Effects of freestream velocity and tilting angle of the rotor on: a) Thrust force of the propeller, b) Angular velocity of the 

propeller. 

 

 
Fig. 5: Steady state values of: a) Thrust force of the propeller, b) Angular velocity of the propeller. 
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4. Conclusion 
A flying vehicle with only one rotor is introduced in this paper. A complete mathematical model to capture all 

aerodynamic forces and moments in the system is presented and the equilibrium state of the system is found. The nonlinear 

equations of motion are then linearized around this equilibrium state. At equilibrium, the vehicle experiences a periodic 

motion and rotates about a fixed axis in space and can maintain its altitude by controlling the magnitude of thrust force 

generated by the propeller. By controlling the attitude of the vehicle, the direction of the fixed axis can be controlled. The 

average thrust force in the periodic motion is also in the direction of the fixed axis. Therefore, by controlling the direction 

of the fixed axis the position control can be achieved.  

A complete model of the propeller operating in the presence of freestream velocity is presented and thrust and moment 

of the propeller (as a function of freestream velocity and angular velocity of the propeller) are calculated. Results show that 

effects of freestream velocity on propeller’s performance are significant when there is a fast yaw motion in the system and 

the equilibrium point is far from that of when neglecting these effects.  

The effects of tilting the motor about x-axis of the body frame is investigated next. Because of the cross-coupling 

effects of the angular momentum in the system, having a faster yaw motion helps to stabilize the vehicle. Simulation 

results for four different scenarios are presented and compared by power consumption of the motor. By choosing the tilting 

angle of the rotor as a tuning parameter and considering the effects of freestream velocity on propeller’s performance (to 

make the model more realistic), optimal-power hover solution is found. At equilibrium and considering the effects of 

freestream velocity, the minimum power consumption in simulations is found to be �̅�𝑚𝑖𝑛 = 72.1 𝑊 when the rotor is tilted 

by 𝛼 = 0.25 𝑟𝑎𝑑, which is 13.5% lower than that of when 𝛼 = 0.  

For future work, effects of tilting angle and freestream velocity on controller performance can be investigated. 

Sensitivity analysis for the proposed model could be another interesting topic for future work.  
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