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Abstract— The seminal work cited in [1], [2] showed, for
the first time, that flight stability of quadcopters would be
possible in case of one or even multiple rotor failures. However,
the quadcopter can remain airborne only by going through
a spinning maneuver about an axis, fixed w.r.t the vehicle
(i.e., resolved yaw). Furthermore, positional control can be
achieved by periodically tilting this axis. This paper builds upon
this concept with two major improvements: (1) introducing a
precise aerodynamic model of propellers that takes the flapping
torque due to unbalanced lifting force in the advancing and
retreating blades subjected to freestream, into account, and (2)
adding to the stability and flight efficiency of the quadcopter by
introducing symmetric fixed tilting angles to the trust vectors.
In our previous work [3], it was shown how the flight stability
and energy efficiency can be improved by introducing fixed
tilting angles in the thrust vectors. For controlled crash landing
in case of one rotor failure, where a resolved yaw maneuver
would be inevitable, introducing a titling angle in rotors can
generate a reasonable resolved-rate-yaw spinning speed to keep
the quadcopter airborne at a lower rotational speed of the
blades by taking advantage of the freestream generated by
spinning. This tilting angle would also lead to passive stability in
yaw motion of the quadcopter before the failure. Our hypothesis
was successfully tested via simulations.

I. INTRODUCTION

Multicopters have gained significant attention in recent
years. Due to their simplicity and maneuverability, they
have been used in a broad spectrum of applications such
as agronomy [4], calibrating antenna of a telescope [5] and
inspection of infrastructures [6].

A special type of multicopters with four motors, known
as quadcopters, has been extensively studied and there is a
vast literature about their modeling, design, control and path
planning. These vehicles normally have an even number of
propellers half of which turn in the opposite direction of the
remaining propellers. Modeling and control of a quadcopter
can be found in [7].

Fault tolerant control of multicopters in case of partial
or complete failure of actuators is another area of inter-
est among researchers. For example, feedback linearization
approach is used in [8] to stabilize a quadcopter after
complete loss of one propeller. In [1], [2], stability and
control of quadcopters experiencing one, two or three rotor
failures are presented, however all propellers have parallel
axes of rotation and the effects of freestream on propeller’s
performance were not investigated.
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To increase reliability via added redundancy, quadcopters
with tilting rotors, hexacopters and octacopters are intro-
duced, which are capable of maintaining stable flight despite
losing one to four actuators [9], [10], however they are not
optimal in terms of power consumption or stability. Research
on emergency landing for a quadcopter with one rotor failure
in an environment cluttered without obstacles can be found
in [11], where the landing location was known a priori.
However, the focus of [11] was on the design of a flight
control based on a simplified dynamic model.

While most of the recent work [1], [2], [8], [11] focuse
mostly on control design and stabilization, our work focuses
on precision modeling, optimal design of more stable con-
figurations of quadcopters which is of great importance in
scenarios found in controlled crash landing, and high-speed
flights.

In this paper, we build upon the work in [1], [2] by
presenting a more realistic dynamic model of quadcopters
in presence of freestream as well as investigating about
a more efficient configuration, that leads to lower power
consumption in hover and passive stability via resolved-
rate yaw motion. We, particularly focus on a quadcopter
experiencing a rotor failure and also for that in spinners.
For these classes of rotary-wing UAVs, because of the fast
rotation of the vehicle’s body (due to unbalanced moments
in the system), it is essential to consider aerodynamic effects
due to freestream velocities.

First, we present a complete mathematical model of pro-
peller’s thrust force and moments and a mathematical model
of quadcopter motion based on blade element theory [12].
Second, we utilize the hover definition presented in [2] to
find the equilibrium state of the vehicle after a rotor failure by
incorporating our proposed mathematical model. Third, we
compare the revised equilibrium state based on our model
with that of [2] in terms of power consumption in hover
for different scenarios. Fourth, we propose a more efficient
configuration for quadcopters (in terms of mechanical power
consumption and stability) by introducing fixed tilting angles
to the rotors that lead to higher passive stability in yaw
motion according to our previous work in [3]. Fifth, we
present the significance of our proposed aerodynamic model
and mechanical configuration for quadcopters by comparing
the flight data with that in the simplified quadcopter model
widely used in the literature via simulations. Our results show
that there exists a specific configuration for quadcopters,
when adopting a fixed tilting angle in thrust vectors for each
blade, that results in energy-efficient hovering via resolved-
rate yaw motion in case of a single rotor failure. Last,
a control strategy similar to that in [2] was utilized for



Fig. 1. Quadcopter in + configuration.

the proposed optimal configuration with fixed tilted thrust
vectors and simulation results are presented.

The paper is organized as follows. In Section II, mathemat-
ical modeling of a quadcopter with a complete aerodynamic
model of a propeller in presence of freestream velocity
is presented. Equilibrium state after failure and effects of
freestream on power consumption in hover are presented
in Section III. Effects of having fixed tilted thrust vectors
on power consumption and stability, a configuration with
optimal-power hover solution after a rotor failure, and simu-
lation results for controlled crash landing with the proposed
optimal configuration and using the precise aerodynamic
model of the propellers are presented in IV. Finally the paper
concludes in Section V.

Notation: Matrices are represented by straight boldface
letter and all vectors are represented by italicized boldface
letters. Rotation matrix between frame i and frame j is
represented by jRi . In addition, the term IωB denotes that ω
belongs to B and is expressed in frame I . Angular velocity
vector of the vehicle is represented by ωωωB = (p, q, r)T where
p, q and r are roll, pitch and yaw rates, respectively. Finally,
‖ωωω‖ represents the 2-Norm of the vector ωωω and |s| represents
the absolute value of scalar s.

II. MODELING

In this section a complete dynamic model of the quad-
copter is given, taking the aerodynamic model of the pro-
pellers’ thrust force and moments in presence of freestream
into account.

Figure 1 shows the schematic of a quadcopter. Six ref-
erence frames are defined, one of which is assumed to be
fixed and attached to the earth, also known as inertial frame
I , one is attached to the center of mass of the vehicle and is
represented by B and four other reference frames attached
to the center of mass of the ith motor Mi, however they do
not turn with the rotors.

Each propeller generates a thrust force fi in the direction
of z-axis of the motor frame. Propellers 1 and 3 have negative
and propellers 2 and 4 have positive angular velocities
expressed in the body frame as ωωωpi = (0, 0, ωpi)T . The
moment of inertia of the propellers is approximated by
that of a disk and is represented by a diagonal matrix as
Ip = diag(Ipxx, I

p
yy, I

p
zz). The angular velocity of the body

frame with respect to the inertial frame is represented by

ωωωB = (p, q, r)T . The geometry of the vehicle is assumed
to be symmetric so its moment of inertia matrix can be
represented by a diagonal matrix as IB = diag(Ixx, Iyy, Izz).
The equations of motion are:

IBω̇ωωB +

4∑
i=1

Ipω̇ωωpi+ (1)

sk(ωωωB)
(

IBωωωB +

4∑
i=1

Ip(ωωωpi +ωωωB)
)

=

τττ lift + τττd + τττ reaction + τττp,

md̈dd =I RBfff +mggg + fffd. (2)

Where, in the left hand side of (1), the first and second
terms denote the moments due to angular accelerations of
body and propellers. The third term represents cross-coupling
of angular momentum because of the rotation of the body
and propellers and sk(ωωωB) represents the skew-symmetric
matrix of the angular velocity of the body. In the right
hand side of (1), the first term is the moment due to
propeller’s thrust force, the second term is the moment due
to drag force of the fuselage, the third term is the reaction
moment of the propeller and the last term is the moment
due to asymmetrical lift distribution over the advancing and
retreating blades of the propellers [13]. The moment due
to aerodynamic drag, τττd, is assumed to be proportional to
angular velocity of the vehicle ωωωB with a proportionality
constant Kd = diag(kdx, kdy, kdz). The reaction moment of
the propeller is assumed to be proportional to the thrust force
of the propeller fffp, with a constant kτ [14].

The derivation of average τττp and fffp are presented in our
previous work [13]. They depend on blade geometry, angular
velocity of the propeller, angular velocity of the vehicle and
freestream velocity. Assuming a two blade propeller, we can
write [13]:

fp = ρacCL

(2R3
b

3
‖ωωωp +ωωωB‖2 +Rb‖VVV∞‖2

)
, (3)

τp = ρacCLR
3
b‖ωωωp +ωωωB‖‖VVV∞‖, (4)

where ρa is the air density, c is propeller’s blade chord,
CL is propeller’s lift coefficient, Rb is the propeller’s blade
radius and VVV∞ is the freestream velocity vector and is
assumed to be in the x − y plane of the motor frame M .
From (3) and (4), it can be seen that the second term in
average thrust force is proportional to the freestream velocity
squared while the rolling/pitching moment of the propeller
is proportional to the freestream velocity. This leads to the
fact that there might be an opportunity to take advantage of
freestream, especially in high speed flight (it is noteworthy
that one needs to take the drag into account as well, however
the drag force is normally proportional to the thrust force
with a proportionality constant kτ ). Furthermore, the effects
of freestream velocity must be taken into consideration
in spinners and/or scenarios where a resolved-rate yaw is
inevitable for flight stability (e.g., as in quadcopters with a
failed rotor).



In (2), the position of the quadcopter’s center of mass
in the inertial frame is denoted by ddd = (d1, d2, d3). In the
right hand side, fff is the sum of all the forces generated by
propellers as expressed in the body frame, fdfdfd is the aerody-
namic drag force due to translational motion of the fuselage
and is assumed to be proportional to the linear velocity
of the center of mass of the vehicle with a proportionality
constant KD = diag(kDx, kDy, kDz), ggg is the gravitational
acceleration and IRB is the rotation matrix from body frame
to inertial frame.

III. EQUILIBRIUM STATE FOR A QUADCOPTER
EXPERIENCING ROTOR FAILURE

In this section, first, we derive the equilibrium state for
a quadcopter experiencing a rotor failure using the method
cited in [1]. However, we use our more accurate dynamic
model for quadcopter and propeller for this purpose. Second,
given the equilibrium state, we calculate the mechanical
power for an example quadcopter and compare the results
with those presented in [1]. In the end, a discussion on the
results and their significance is provided.

A. Equilibrium State and Hover Solution
Generally, in multi-rotor UAVs, hovering is defined as:

maintaining a position with zero angular and linear velocities.
However, in case of one rotor failure in a quadcopter and
in order to control the attitude and altitude of the vehicle, a
new hovering definition would be required as: maintaining an
altitude while rotating with constant angular velocity about
a unit vector that is fixed with respect to the vehicle [1].

Suppose motor number 4 (see Fig. 1) failed. Because of the
unbalanced moments of the remaining functioning propellers,
the vehicle starts rotating about a unit vector nnn (as expressed
in the body frame) with angular velocity ωωωB . The evolution
of this unit vector in time can be written as follows:

ṅnn = −ωωωB ×nnn. (5)

According to this new hovering definition, we attempt to
keep the orientation of this unit vector fixed with respect
to the vehicle. If this unit vector is fixed, from (5) one can
conclude that the angular velocity of the vehicle will remain
parallel to this unit vector so the vehicle will be rotating
about nnn. If ωωωB remains constant, one can achieve hovering
as long as all the states of the system will remain bounded.
Also, ṅnn must be equal to zero.

In other words, during hover, nnn is a unit vector stationary
in the inertial frame as expressed in the body frame which is
parallel to ωωωB vector. Setting (5) to zero and knowing that
nnn is a unit vector, one can write the followings (note that an
overbar indicates equilibrium values):

ṅnn = 0 −→ ‖n̄nn‖ = σ‖ω̄ωωB‖ = 1 −→ σ =
1

‖ω̄ωωB‖
. (6)

Also, during hover, the projection of total thrust forces of all
propellers onto n̄nn should balance the weight of the vehicle
which results in the following:

4∑
i=1

f̄ffpi · n̄nn = m‖ggg‖. (7)

As the vehicle is turning with constant angular velocity
ω̄ωωB = (p̄, q̄, r̄)T , the center of mass of the ith propeller
goes through a rotation about n̄nn which generates a uniform
freestream velocity VVV∞ = lll × ωωωB over the propeller
where lll is the position vector of the center of mass of the
propeller measured from the center of mass of the vehicle
and represented in the body frame. However, since yaw is the
dominant rotational motion after rotor failure, this freestream
velocity can be assumed to be in the x−y plane of the motor
frame M and approximated by V∞ = r̄l [13]. Considering
this freestream velocity, using the proposed propeller model
in [13] and the resultant angular velocity of the propellers,
average thrust force and moment of the ith propeller can be
written as follows:

fpi = ρacCL

(R3
bω

pi
2

3
+
R3
b r̄

2

3
+
Rbr̄

2l2

2
+

2R3
b r̄ω

pi

3

)
(8)

τpi = ρacCL

(R3
b r̄lω

pi +R3
b r̄

2l

3

)
, (9)

Using equations (1)- (7), by setting angular accelerations
to zero and considering the proposed propeller model, a
system of eight algebraic equations for 11 unknowns are
obtained. Three more equations are required to solve the
system. The unknowns are: p̄, q̄, r̄ , n̄x, n̄y , n̄z , σ, ω̄p1 ,
ω̄p2 , ω̄p3 , ω̄p4 . The first six unknowns are the components
of angular velocity vector of the body and the unit vector of
average thrust force of all propellers respectively, σ is the
inverse of norm of the angular velocity vector ωωωB according
to (6) and the last four unknowns are angular velocity of the
propellers. Assuming that motor number 4 is failed (ω̄p4 = 0)
and by adding the following constraints, we will end up with
a system of 11 algebraic equations with 11 unknowns. The
first constraint indicates the thrust force of the propellers 1
and 3 must be equal while the second constraint means the
thrust force ratio of propellers 1 and 2 must be constant.

‖f̄ffp1‖ = ‖f̄ffp3‖ , ρ =
(‖f̄ffp2‖
‖f̄ffp1‖

)2
, (10)

where ρ is a tuning factor and a non-negative scalar. Now
there are 11 algebraic equations to be solved for 11 un-
knowns to find the equilibrium state. For simplicity and with-
out compromising our precision modeling, assuming Ip �
IB , one can neglect the second term in (1). Also, since yaw
is the dominant rotational motion, τττd is assumed to oppose
yaw motion only and is assumed to be proportional to yaw

Fig. 2. Freestream velocity as represented in the x− y plane of the motor
frame. In this example, freestream increases relative airflow velocity over
the advancing blade (on the right) and decreases it over the retreating blade
which generates a pitching moment on the propeller.



rate with proportionality constant β as τττd = (0, 0,−βr)T .
The reaction moment of the propeller is also assumed to
be proportional to its thrust force and can be expressed in
the body frame as τττ reaction,pi = −sign(ωpi)kτfffpi . Therefore,
using the reaction moment and the angular velocity of the
propeller, the mechanical power in equilibrium state can be
found as follows:

P̄pi = τ̄reaction,pi ω̄
pi = −sign(ωpi)kτ‖fffpi‖ωpi . (11)

B. Hover Solutions For Example Vehicle

Next, we try to find the equilibrium state for an example
vehicle with physical properties given in [1] which will be
used as a base vehicle for comparing our model with that
in [1] and others in which a simplified model for thrust and
propeller moment was employed.

Consider a generic quadcopter (from [1]) of mass m = 0.5
kg, Ixx = Iyy = 3.2×10−3 kg.m2, Izz = 5.5×10−3 kg.m2,
l = 0.17 m, Ipzz = 1.5× 10−5 kg.m2, β = 2.75× 10−3 and
kτ = 1.69 × 10−2 m. The propellers have two blades with
c = 0.03 m, CL = 1.022, Rb = 0.08 m and air density is
assumed to be constant ρa = 1.225 kg/m3. Note that the
thrust force and reaction moment of the propellers in [1] (as
well as most of the quadcopter models in the literature) are
assumed to be proportional to its angular velocity squared as
follows:

fpi = kfω
pi2, (12)

τpi = kτfpi ,

where kf = 6.41×10−6 Ns2/rad2 and kτ are proportionality
constants. In our examples, instead of kf , we use propellers
knowing c = 0.03 m, CL = 1.022 and Rb = 0.08 are
equivalent to kf used in [1] to ensure fair comparison
between our results with those in [1]. When freestream
velocity is zero, kf can be found as follows:

fpi = kfω
pi2 =

ρacCLR
3
b

3
ωpi

2

, kf =
ρacCLR

3
b

3
.

For this example, without loss of generality, we assume
motor number 4 is failed. Using (11) we search for an
optimal-power hover solution with respect to the tuning
parameter ρ. The results are presented in Fig. 3. The blue
curve represents the variations of total mechanical power
of the remaining functioning propellers with the simplified
propeller model given in (12) while the red curve represents
the same results for the improved propeller model presented
in this paper.

After motor failure, we would need to calculate a value
for ρ that corresponds to the minimum power hover solution
using the improved propeller model. Given this value of ρ
along with the solution found from (1) - (11), one can
ultimately determine the angular velocity of the propellers
in equilibrium state. From Fig. 3 this optimal hover solution
is found when ρ = 0 as follows:

n̄nn = (0, 0, 1)T , ω̄p1 = ω̄p1 = −643.7 rad/s, (13)

ω̄p2 = ω̄p4 = 0, ω̄ωωB = (0, 0, 30.1)T rad/s,

f̄p1 = f̄p3 = 2.45 N, f̄p2 = f̄p4 = 0,

P̄hover =

4∑
i=1

P̄pi = 53.35 W.

While the minimum power hover solution for the simpli-
fied propeller model (12) is found when ρ = 0 as follows:

n̄nn = (0, 0, 1)T , ω̄p1 = ω̄p1 = −618.5 rad/s, (14)

ω̄p2 = ω̄p4 = 0, ω̄ωωB = (0, 0, 30.1)T rad/s,
f̄p1 = f̄p3 = 2.45 N, f̄p2 = f̄p4 = 0,

P̄hover =

4∑
i=1

P̄pi = 51.27 W.

Note that for different parameters and different types of
propeller, as long as we are using a quadcopter, the overall
shape of the graph in Fig. 3 will remain the same. Therefore,
the optimal power hover solution occurs at ρ = 0 as found
in (13) and (14). Also, it is worth mentioning that for ρ > 1
the total mechanical power is far from being optimal and are
not included in the figure for brevity.

C. Discussion

After a rotor failure, the vehicle starts spinning with an-
gular velocity ωωωB which will be in the opposite direction of
rotation of some of the propellers. Therefore, these propellers
need to turn faster to generate the same thrust force as that
before the failure which leads to higher mechanical power.
This is particularly important, when the angular velocity of
the body is not negligible compared to that of the propellers.

Figure 3 presents another interesting result. While search-
ing for the optimal power hover solution with respect to ρ,
we find that the total mechanical power for hover solution
when ρ = 0.45 is very close to that when ρ = 0 when
using the improved propeller model. However, there is a
subtle difference between these two cases, which we beleive
it reflects on the controllability of the vehicle.

Another conclusion can be drawn using (8) and (9) as:
higher freestream velocities may result in lower mechanical
power consumed during hover, which is due to the thrust
force being proportional to the freestream velocity squared.
In addition, in case of a rotor failure with yaw being the
dominant rotational motion, this freestream velocity, being
proportional to the angular velocity of the vehicle r̄. As stated
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Fig. 3. Variations of mechanical power versus variations of ρ for a
quadcopter experiencing a rotor failure. Note that ρ = 0 represents the
case where rotors 1 and 4 are failed as well.



earlier, r̄ has an adverse effect on total mechanical power
only if it is in the opposite direction of the propeller’s angular
velocity ωp. As a result, if we find a configuration where r̄
and ωp are in the same direction (either after a rotor failure
or in a spinning UAVs) then we can get the best of both
worlds. In the next section, we present some results on how
to find this configuration.

IV. EFFECTS OF TILTING THE ROTORS

This section presents the effects of tilting the rotors of the
quadcopter on mechanical power as well as finding optimal-
power configurations for quadcopters experiencing a rotor
failure. Note that this tilting angle will be fixed for each
configuration and does not change on the fly, therefore no
additional actuator is required.

In regular quadcopters, yaw motion is usually carried out
by reaction moments of the rotors. This moment is fairly
small compared to the that generated by the propeller’s thrust
force about the center of mass of the vehicle, therefore it may
not be an efficient way to induce yaw. Instead, one can yaw
by tilting the rotors by an angle α about the x-axis of their
corresponding motor frame, thus, using a small component
of the propeller’s thrust force to generate relatively larger
yaw moments. Note that the tilting angle should be small
enough (−0.2 < α < 0.2 rad) so that (8) and (9) still hold
true and the component of the thrust force that balances the
weight of the vehicle experiences relatively small changes.

We introduce a tilting angle αi about the x-axis of the
motor frame Mi to the rotors similar to that in [3] as shown
in Fig. 4. According to [3], having α1,3 > 0 and α2,4 < 0
adds to the passive stability of the vehicle in yaw motion
which is an improvement in quadcopter flight without any
rotor failure. But we are interested in finding the effects of
this tilting angle on the mechanical power of the quadcopter
after rotor failure and also on spinning UAVs like bispinner.

A new configuration is proposed by tilting the rotors about
the x-axis of the motor frame (shown in blue in Fig. 1) as
shown in Fig. 4 (a) where the positive direction of the tilting
angle αi is shown in Fig. 4 (b). Because rotors 1 and 3 are
assumed to be turning in the negative direction of z-axis of
the body frame, by tilting these motors by any positive angle,
the vehicle tends to generate a yaw motion that is in favor of
reducing mechanical power (11). Whereas for rotors 2 and
4 which are turning in the positive direction of the z-axis of
the body frame, the tilting angle should be negative. Note
that, for simplicity, it is assumed |α1| = |α2| = |α3| = |α4|.

Fig. 4. (a) a new configuration with tilted rotors. (b) the positive direction
of the tilting angle α.

Although this new configuration might not lead to reduc-
ing mechanical power in quadcopters without rotor failure
very effectively, however, it can be drastically useful in
quadcopters experiencing rotor failure and in spinning UAVs.
Another question that might be asked is about the application
of spinning UAVs. An interesting application of spinning
UAVs is invisible flight for surveillance purposes. One ex-
ample is Phantom Sentinel, a hand launch spinning UAV,
developed and patented by VeraTech Aero Corporation [15].

For the quadcopter example, Assuming motor number 4
is failed, we search for the best set of ρ and α using (11)
to find the optimal-power hover solution. Results show that
the minimum-power solution can be found when ρ = 0 and
α1,3 = −0.2 rad. When ρ = 0, motor number 2 is also off
and it means we only have a bispinner configuration. If we
solve equations (1)- (10) for ρ = 0 and α1,3 = −0.2, the
hover solution can be found as follows:

n̄nn = (0, 0, 1)T , ω̄p1 = ω̄p1 = −588.9 rad/s, (15)

ω̄p2 = ω̄p4 = 0, ω̄ωωB = (0, 0,−30.7)T rad/s,
f̄p1 = f̄p3 = 2.50 N, f̄p2 = f̄p4 = 0,

P̄hover =

4∑
i=1

P̄pi = 49.80 W.

By comparing (15) with (13), it can be seen that although
propellers 1 and 3 in (15) are turning slower, they are
generating more thrust force than those in (13). This is
because the body of the quadcopter in (13) is turning in
the opposite direction of propellers 1 and 3, therefore the
propellers have to turn faster to generate the same amount
of thrust force. In other words, the resultant angular velocity
of the propeller with respect to the freestream is important,
not the absolute rotational speed of the rotors.

A. Discussion
All the hover solutions for case studies presented in

this paper come with relatively high angular velocity ω̄ωωB .
This means that after a rotor failure in quadcopters, for
stabilization, the controller must be able to bring the vehicle
from rest before the failure (assuming it is in hover) to the
new equilibrium state where the vehicle spins with constant
angular velocity ω̄ωωB . Specifically, this is non-trivial when
using linear control strategies for stabilization at high angular
velocities and bringing the vehicle from stationary state to
the new equilibrium state [1], [2].

In addition, to control the attitude and position of the
vehicle, we should manipulate the angular velocity of the
propellers periodically and at a frequency higher than or
equal to the corresponding frequency of the periodic motion
of the vehicle. Therefore, the motors turning the propellers
must be capable of responding at such high frequencies. This
itself adds another constraint to the problem.

Another issue may arise in hover solutions where the
angular velocity of the body is slower than a certain threshold
which could result in the vehicle rendering itself uncontrol-
lable (see controllability conditions given in [2]).

The introduced tilting angle to the thrust vectors resolves
the aforementioned issues with the hover solutions presented
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Fig. 5. Simulation results for position control. ddd0 = (0, 0, 10) m and
ddddes = (−5, 2, 16) m.

earlier. It allows us to explore more configurations and find
a hover solution where the frequency of the periodic motion
in hover is less than the frequency at which we command
the motors. It also helps us to find a configuration that is
both controllable after rotor failure and its hover solution is
close enough to the equilibrium state of the vehicle before
the failure such that linear control strategies can be applied
for stabilization.

By choosing this tilting angle to be α1,3 = −0.14 rad, the
following hover solution can be found:

n̄nn = (0, 0, 1)T , ω̄p1 = ω̄p1 = −608.5 rad/s, (16)

ω̄p2 = ω̄p4 = 0, ω̄ωωB = (0, 0,−12.3)T rad/s,
f̄p1 = f̄p3 = 2.48 N, f̄p2 = f̄p4 = 0,

P̄hover =

4∑
i=1

P̄pi = 50.93 W.

Although (16) is not as energy-efficient as (15), it leads to
having an angular velocity ωωωB that is lower than that in (14)
and allows us to use linear control strategies.

Finally, to demonstrate feasibility of the hover solution and
validate the results, we present simulation results for position
and attitude control for the quadcopter in (16) after a rotor
failure in Fig. 5. Using the control strategy from [1], an LQR
controller, with a weight matrix Q = diag(1, 1, 20, 20) on the
attitude states p, q, nx and ny and a weight of R = 1 for
the control input, is designed. The first graph represents the
position of the quadcopter starting from an initial position
ddd0 = (0, 0, 10) m to a desired position ddddes = (−5, 2, 16)
m. The second graphs represents the components of angular
velocity vector of the body as expressed in the body frame.
The higher frequency response in pitch and roll motion is
because only these two rotational degrees of freedom are
manipulated directly to control the x and y components of
the position of the vehicle. Please note that we used a linear
control strategy and could successfully stabilize the vehicle.

V. CONCLUSIONS

This paper presents precision modeling and optimal-power
hover solutions for quadcopters experiencing rotor failures
and for spinning UAVs. A complete dynamic model is

presented considering the effects of freestream on propeller’s
thrust force and moments. Hover solutions for a quadcopter
experiencing a rotor failure is presented next and its me-
chanical power is computed and compared with that for a
quadcopter with simplified propeller model widely used in
the literature. The results show that the simplified propeller
model cannot approximate the thrust force and moments of
the propeller accurately enough. The differences between the
two models are presented. We introduced a fixed tilting angle
to the rotors which helps to find more power optimal hover
solutions for quadcopters experiencing rotor failure. Results
show that this fixed tilting angle also helps in controllability
of the vehicle and finding more feasible configurations for
spinning UAVs. In the end, example simulation results are
presented.
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