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ABSTRACT

Recently, a class of unmanned aerial vehicles (UAVs) called multi-rotors has gained

significant attention. Despite remarkable progress in control and design of multi-

rotors in the past decade, two issues, namely endurance and safety, still remain of

main concerns. This thesis mainly aims at investigating about modeling and control

of multi-rotor UAVs while focusing on safety, performance and optimal design.

A complete model for forces and moments of a propeller in presence of freestream

is presented which helps to derive mathematical models for two different types of

multi-rotor UAVs: i) quadcopters with angled thrust vector; and ii) spinning multi-

rotors with streamline-shape fuselage.

Afterwards, equilibrium states and the constraints for both types of vehicles are

introduced and using control design techniques, we develop flight control strategies

to control attitude and position of the vehicle. The following control strategies are

developed for: i) quadcopters with no rotor failures; ii) quadcopters with one rotor

failure; and iii) spinning multi-rotors.

Also, the performance of the proposed multi-rotor UAVs is investigated in three

different topics: i) optimality of the hover solutions in terms of power consumption;

ii) stability of the vehicle in different configurations; and iii) controller performance
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in trajectory tracking. First, this section leads to introducing six different configura-

tions for quadcopters ranking from the most stable to the most maneuverable which

are presented analytically for the first time. Second, a specific configuration for a

quadcopter is introduced that leads to the minimum power consumption during a

yaw-rate-resolved hovering after a rotor failure. Third, we present optimal design

for spinning multi-rotors featuring minimum power consumption and best trajectory

tracking performance.

Furthermore, a framework for controlled emergency landing of a quadcopter, with

a rotor failure and away from sensitive areas, is presented. Given a 3D representa-

tion of the environment, an optimal flight path towards a safe crash landing spot,

while avoiding obstacles, is developed using RRT* algorithm. The cost function for

determining the best landing spot consists of: (i) clearance from the obstacles; and

(ii) distance from the landing spot. Finally, the framework is tested via nonlinear

simulations and results are presented.

Keywords: modeling, flight control, path planning, propeller, unmanned aerial ve-

hicles, optimal design

First Advisor: Dr. Mehran Mehrandezh, University of Regina

Second Advisor: Dr. Farrokh Janabi-Sharifi, Ryerson University

iii



ACKNOWLEDGMENTS

I would like to thank my advisors, Dr. Mehran Mehrandezh and Dr. Farrokh

Janabi-Shaifi, for their support, guidance and help throughout my graduate studies.

I also would like to thank my incredible parents, sisters and brother for their love and

support in each and every moment of my life.

This research is based upon work supported by Natural Sciences and Engineering

Research Council of Canada (NSERC) and Micropilot Inc.

iv



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivations and Contributions . . . . . . . . . . . . . . . . . . . . . . . 4

2 Multi-rotor UAV Modeling with Revised Propeller Dynamics . . . 10

2.1 Propeller Model in Presence of Freestream . . . . . . . . . . . . . . . . 11

2.2 Dynamic Model of Quadcopters with Angled Thrust Vectors . . . . . . 20

2.3 Dynamic Model of Spinning UAVs with Streamline-shape Fuselage . . . 25

2.3.1 Effects of Freestream in Spinning UAVs . . . . . . . . . . . . . . 28

3 Flight Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Flight Control of Quadcopters with Angled Thrust Vector . . . . . . . 31

3.2 Flight Control of Quadcopters with One Rotor Failure . . . . . . . . . 40

3.3 Flight Control of Spinning UAVs with Streamline-shape Fuselage . . . 49

3.3.1 Monospinners Simulation Results . . . . . . . . . . . . . . . . . 56

3.3.2 Bispinners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Performance Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Optimal Design in Quadcopters . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Optimal design for stability . . . . . . . . . . . . . . . . . . . . 64

4.1.2 Optimal design for fault tolerant control . . . . . . . . . . . . . 74

v



Page

4.2 Optimal Design in Spinning UAVs . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Monospinners . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.2 Bispinners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Control for Crash Landing a Quadcopter with a Rotor Failure . . 104

5.1 The Best Landing Spot . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Crash Landing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . 114

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A Rotation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vi



LIST OF TABLES

Table Page

2.1 Important parameters for modeling of propellers. . . . . . . . . . . . . . . 19

vii



LIST OF FIGURES

Figure Page

2.1 Schematic of a propeller with a frame attached to its COM. . . . . . . . . 12

2.2 A propeller in presence of freestream. . . . . . . . . . . . . . . . . . . . . . 12

2.3 Simulation results for thrust force and moments of a propeller in presence
of freestream. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Propeller in presence of freestream. The freestream velocity vector VVV ∞2

is assumed to be parallel with the angular velocity vector of the propeller ωωωp.16

2.5 Propeller in presence of freestream. The freestream velocity vector VVV ∞2

is assumed to be parallel with ωωωp. On top, VVV ∞2 is the positive direction
of z-axis and in bottom it is assumed to be in the opposite direction. . . . 17

2.6 Quadcopter in “+” configuration. Body frame is shown in blue and is
attached to the center-of-mass of the quadcopter. A frame, shown in blue,
is attached to each motor in order to determine orientation of the motors
with respect to body frame. Motors are located at distance l and h from
z-axis and x-y plane of the body frame respectively. . . . . . . . . . . . . . 21

2.7 Twist angle α1 about the x-axis of the motor frame M1. . . . . . . . . . . 22

2.8 Dihedral angle β1 about the y-axis of the motor frame M1. . . . . . . . . . 22

2.9 A spinning UAV with two rotors and streamline-shape fuselage. . . . . . . 26

2.10 Effects of freestream on propeller’s performance in a spinning UAV. . . . . 29

3.1 Quadcopter with tilted rotors in “+” configuration. Body frame is shown
in blue and is attached to the center-of-mass of the quadcopter. . . . . . . 32

3.2 Block diagram of the proposed nested loop control structure for a quad-
copter with tilted rotors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Nonlinear simulation results for position control of a quadcopter with tilted
rotors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Quadcopter in “+” configuration. All the tilting angles are set to zero. . . 40

viii



Figure Page

3.5 Representation of the unit vector nnn in a quadcopter after the failure of
motor number 4. The green circle represents the periodic motion of the
quadcopter about nnn. As it can be seen, nnn and ωωωB are parallel and they
both are in parallel with the z-axis of the inertial frame. . . . . . . . . . . 41

3.6 Simulation results for stabilizing a quadcopter after one rotor failure. The
position of the vehicle is controlled as well. . . . . . . . . . . . . . . . . . . 50

3.7 Variations of thrust force for all propellers of the quadcopter after one
rotor failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Simulation results for stabilizing a monospinner. Results for position con-
trol from an initial position ddd0 to the desired position dddd are presented. . . 58

3.9 Simulation results for stabilizing a monospinner. Variations of thrust force
of the propeller is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.10 Simulation results for stabilizing a monospinner. Variations of thrust force
of the streamline-shape fuselage is shown. . . . . . . . . . . . . . . . . . . 59

3.11 Simulation results for stabilizing a bispinner. Results for position control
from an initial position ddd0 to the desired position dddd are presented. . . . . . 61

3.12 Simulation results for stabilizing a bispinner. Variations of thrust forces
generated by the propellers and the fuselage. Note that fp1 and fp2 are
very close and fall on top of each other in this graph. . . . . . . . . . . . . 62

4.1 Quadcopter in “+” configuration. Body frame is shown in blue and is
attached to the center-of-mass of the quadcopter. A frame, shown in blue,
is attached to each motor in order to determine orientation of the motors
with respect to body frame. Motors are located at distance l and h from
z-axis and x-y plane of the body frame respectively. . . . . . . . . . . . . . 65

4.2 Dihedral effect in 2D motion of a quadcopter. The quadcopter is pitching
down and moving to the left. Dihedral effect generates the moment q′ and
acts like damping in the system. . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Quadcopter having only twist angles α1,3 > 0 and α2,4 < 0. The vehi-
cle is going through pure yaw motion r and dihedral effect generates a
counteracting yaw motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 A Quadcopter in “+” configuration. Motor frames and body frame are
presented in blue and red respectively. Direction of rotation of propellers
are presented as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Twist angle α1 about the x-axis of the motor frame M1. . . . . . . . . . . 77

ix



Figure Page

4.6 The proposed configuration for quadcopter by introducing twist angle to
the rotors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Equilibrium value of total power consumption of the motors for all values
of twist angle. Note that ρ = 0 . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 The absolute value of yaw rate r at equilibrium for all values of twist
angle. Note that ρ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.9 The absolute value of angular velocity of the propellers at equilibrium with
respect to the body frame for all values of twist angle. Note that ρ = 0 . . 79

4.10 Contours of Ps versus variations of θp and θB. In these simulations, l/RB =
1, h/RB = 0.2, cB/cp = 1 and RB/Rp = 2 . . . . . . . . . . . . . . . . . . 85

4.11 Contours of Ps versus variations of cB/cp and RB/Rp. In these simulations,
l/RB = 1, h/RB = 0.2, θp = θB = 10 degrees. . . . . . . . . . . . . . . . . 85

4.12 Variations of Ps versus variations of RB/Rp when cB/cp = 2. . . . . . . . . 86

4.13 Variations of Ps versus variations of l/RB. . . . . . . . . . . . . . . . . . . 87

4.14 Variations of the cost function G(y) versus RB/Rp. . . . . . . . . . . . . . 88

4.15 Variations of the cost function G(y) versus l/RB. . . . . . . . . . . . . . . 88

4.16 Nonlinear simulation results for position control of a monospinner with
optimal configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.17 Contours of Ps versus cB/cp and RB/Rp. Note that l/RB = 1, h/RB = 0
and δ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.18 Variations of Ps versus RB/Rp where cB/cp = 2. Note that l/RB = 1,
h/RB = 0 and δ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.19 Contours of Ps versus variations of tilting angle δ and RB/Rp. cB/cp = 2,
l/RB = 1 and h/RB = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.20 Variations of Ps versus variations of tilting angle δ for constant values of
RB/Rp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.21 Variations of the minimum Ps for all values of tilting angle δ versus vari-
ations of l/RB for constant values of RB/Rp. . . . . . . . . . . . . . . . . . 97

4.22 Variations of Ps versus variations of RB/Rp. The tilting angle is δ = 0.1,
cB/cp = 2, l/RB = 1 and the pitch angle for both propeller and fuselage
is 10 degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.23 Nonlinear simulation results for position control of a bispinner with opti-
mal configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

x



Figure Page

5.1 An example map with obstacles. Red cubes represent obstacles. . . . . . 106

5.2 An example of Generalized Voronoi Diagram for a given map of the envi-
ronment. Blue lines show the GVD. . . . . . . . . . . . . . . . . . . . . . 108

5.3 Representation of the environment. Obstacles are shown in red, GVD is
represented by blue lines, initial position of the vehicle is represented by
blue circle and the best landing spot is represented by magenta asterisk. 112

5.4 Path planning and path following simulation results. RRT* graph is rep-
resented by green, the initial path found by the algorithm is shown in
magenta, the final shortest path is shown in yellow and the actual path of
the quadcopter is shown in dashed black line. . . . . . . . . . . . . . . . 113

xi



SYMBOLS

ωωωp angular velocity vector of propeller

VVV ∞ freestream velocity vector

Rb blade radius

rb distance of the blade element from the root of the blade

drb width of the blade element

ψp azimuth angle of propeller

c chord of the blade

ρa air density

CL lift coefficient

CD drag coefficient

fp propeller thrust force

τdp propeller moment due to drag

τp propeller moment due asymmetric lift distribution

Θ angle of attack

Θeff effective angle of attack

σ lift slope

β dihedral angle

α twist angle

xii



ωωωB angular velocity vector of the body of the vehicle

IB moment of inertia matrix of the body of the vehicle

Ip moment of inertia matrix of the propeller

γ̇ z-component of angular velocity vector of propeller

τττ dB moment due to drag of the body of the vehicle

ggg gravitational acceleration

δ tilting angle of the rotors in spinning UAV

(p, q, r) roll, pitch and yaw rates of the vehicle

(φ, θ, ψ) Euler angles

m mass

λ drag coefficient in yaw motion

ρ tunning parameter in finding hover solution

ξ damping ratio

ωn natural frequency

u control input

klqr lqr controller gain matrix

kp proportional gain

kd derivative gain

P power

Mi a coordinate frame named M attached to the ith propeller

ζ damping coefficient in rotational motion

Q, R LQR controller weight matrices

xiii



Ps specific power

l distance of COM of the propeller from COM of the vehicle

cB chord of the blade for fuselage

cp chord of the blade for propeller

RB blade radius for fuselage

Rp blade radius for propeller

fB streamline-shape fuselage thrust force

xiv



ABBREVIATIONS

AOA angle of attack

BET blade element theory

COM center of mass

e.g. exempli gratia

Fig figure

GVD generalized Voronoi diagram

LQR linear quadratic regulator

NACA national advisory committee for aeronautics

PID proportional-integral-derivative

RRT rapidly-exploring random trees

THOR transformable hovering rotorcraft

UAV unmanned aerial vehicle

w.r.t. with respect to

xv



1

Introduction

1.1 Literature Review

Multi-rotors have gained significant attention in recent years. Due to their sim-

plicity and maneuverability, they have been used in a broad spectrum of applications

such as bio-engineering [1], agronomy [2] , calibrating antenna of a telescope [3],

sports [4] and inspection of infrastructures [5].

A special type of multi-rotors with four motors, known as quadcopters, has been

extensively studied and there is a vast literature about their modeling, design, control

and path planning. These vehicles normally have an even number of propellers half

of which turn in the opposite direction of the remaining propellers. Modeling and

full control of a quadcopter can be found in [6]. Quadcopters with fixed rotors fall

under the under-actuated and non-holonomic flying machine categories. In the past
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decades, many different control strategies have been developed to deal with their

under-actuation to improve their performance, agility and stability [7], [8].

In modeling of UAVs, aerodynamic model of propellers plays an important role as

it determines the majority of forces and moments in the system. Therefore, an accu-

rate model for the propellers is crucial in analyzing such a system. In the literature,

typically, the thrust force and moment generated by the propeller is assumed to be

proportional to the square of its angular velocity and the effects of freestream on its

performance is usually neglected by assuming small freestream velocities [9], [10], [11].

However, this model is not valid in high speed flight and its accuracy deteriorates as

flight speed increases [12], [13].

Recently, there have been considerable attempts on designing simpler flying ve-

hicles with the minimum number of actuators. For example, a controllable flying

vehicle with only one moving part can be found in [14] and a swashplateless control-

lable co-axial UAV can be found in [15]. Altogether, these simple flying vehicles can

be classified under three different categories: (1) Samara-type vehicles, (2) flapping

wing UAVs, and (3) spinning UAVs.

The vehicles in the first category are inspired from nature through unpowered

flight in maple/pine seeds (or Samaras) [16]. They offer a passively-stable flight with

slow-rate descending altitude, therefore they would require no active control. A small

propulsion system has been added to the body, in lab-scale prototypes, to control the

rotational speed and correspondingly the descending rate [16].

2



The vehicles in the second category are inspired from birds. They normally have

one or two flapping wings. Single actuator (wing) vehicles of this category are only

capable of altitude control, while those with two actuators (i.e., two wings) are capable

of controlling all three translational degrees of motion [17].

Flying machines falling into the third category, namely spinners, generate a con-

stant rotation about a fixed axis in space, precession axis, due to the presence of

unbalanced moments in the system (aka, boomerang-type spinners). The minimum

number of actuators required to achieve position control in these machines is one,

which renders itself as the simplest structure of rotary-wing UAV that is controllable

in all translational degrees of motion [18].

Technical specifications of a spinner-type machine with only one actuator, (aka,

a monospinner) can be found in [14]. Spinners with two, three and four actuators

can also be found in [18]. A novel design of a small spinning vehicle that consists

of one single propeller and an aerodynamically-designed streamline-shape fuselage is

presented in [19]. A single blade spinning rotor-craft with two tilted rotors is presented

in [20] and a transformable vehicle, also known as THOR, which transforms from a

fixed-wing aircraft to a spinner can be found in [21].

Fault tolerant control of multicopters in case of partial or complete failure of

actuators have become an area of interest among researchers. For example, feedback

linearization approach is used in [22] to stabilize a quadcopter after complete loss

of one propeller. Stability and control of quadcopters experiencing one, two or three

rotor failures are presented in [23], however all propellers have parallel axes of rotation
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and the effects of rotation of center of mass of the propellers on their performance

are not investigated. To increase reliability by redundancy, quadcopters with tilting

rotors, hexacopters and octacopters are introduced which are capable of maintaining

stable flight despite losing one to four actuators [24], [25], [26], however they are

not optimal in terms of power consumption or stability. Emergency landing for a

quadcopter with one rotor failure in an environment without obstacles can be found

in [27] where the landing location is known and path planning is not discussed.

An emerging area of research in multi-rotor UAVs falls into finding a landing spot

and planning a safe trajectory towards it in case of rotor failure. While there is a

huge body of literature on trajectory planning for quadcopters, [28], [29], [30], [31],

the work done on extending this to a situation where there is a rotor failure is scarce.

1.2 Motivations and Contributions

Quadcopters with fixed rotors fall under the under-actuated and non-holonomic

flying machine categories. Adoption of a larger number of rotors and/or adding

the tilting effect on them for on-the-fly thrust vectoring can lead to fully-actuated

holonomic machines at the cost of making them mechanically more complicated and

less power efficient. There have been some studies on: (i) building UAVs using

variable-pitch blades [32]; (ii) configuring rotors to yield non-parallel thrust vec-

tors [33], [34], [35]; (iii) designing multi-copter UAVs with rotors that can tilt on

the fly [24]; and (iv) building multi-copter UAVs with rotors fixedly mounted with an

angle with respect to the fuselage [36]. However, very little attention has been given
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to calculating the optimal configuration in quadcopters with fixed rotors for highest

static and dynamic stability. In this thesis, we attempt to look at all possible con-

trollable configurations for a quadcopter with fixed rotors and analyze their stability

attributes in a quantitative and analytical fashion for the first time. We also provide

a unified dynamic model for all the possible configurations from which special cases

can be deducted.

Despite the unprecedented progress in the development of UAVs (especially mul-

ticopters) in recent years, two major issues, namely safety and endurance, still remain

of main challenges. These vehicles are prone to having different types of failure in the

system such as partial or complete loss of motors or propellers, collision with obsta-

cles or other vehicles and power outage. Since they are becoming an inevitable part

of our everyday life, safety becomes one of the key factors in designing such vehicles.

Our goal is to propose a complete solution including modeling, real-time control and

planning for emergency landing of quadcopters in case of a rotor failure.

This thesis also presents a framework for emergency landing of a quadcopter in case

of a rotor failure. As mentioned in the previous section, in the literature, typically,

the thrust force and moment generated by the propeller is assumed to be proportional

to the square of its angular velocity and the effects of freestream on its performance

is usually neglected by assuming small freestream velocities. However, this model is

not valid in high speed flight and its accuracy deteriorates as flight speed increases.

Therefore, based on blade element theory [37], a complete mathematical model for

the propeller in presence of high speed freestream is derived which results in defining
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a specific configuration of quadcopters by adding a tilting and a dihedral angle to

the rotors thrust vector, which leads to the minimum power consumption in hovering

and also trajectory tracking in case of a rotor failure. Hover solution for different

configurations is calculated and a comparison in terms of power consumption amongst

them is presented. For the configuration with minimum power consumption, cascaded

control strategy is used to control attitude and position of the vehicle and nonlinear

simulations validating the results are presented.

For completing the landing, first an algorithm is proposed to find the best landing

spot in a given map of the environment where obstacles are represented by cuboids.

Two parameters are used to define a cost function to find the optimal landing spot in

the given map: (i) finding the safest landing spot with the largest clearance from the

obstacles; and (ii) finding an optimal trajectory towards the landing spot. To properly

define the clearance from obstacles, Generalized Voronoi Diagram (GVD) is used. For

all points on the GVD, the one with minimum cost is selected as the landing spot.

A finite horizon is selected in generating the GVD. The boundary of this horizon is

estimated based on the total cost-to-go based on the power requirement. Furthermore,

due to the size and dimensionality of the search space, an RRT*-type randomized

motion planning strategy is adopted that can generate optimal trajectories on the fly

in real time. In the end, using nonlinear simulations and the designed controller, the

results of following the path and performing emergency landing are evaluated.

In the realm of highly under-actuated UAVs and towards designing simpler flying

vehicles, this thesis also investigates about the optimal design of a highly under-
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actuated and simple spinning UAVs with a streamline-shape fuselage having only

two rotors that can provide an optimal solution for hovering while having the best

trajectory tracking performance for the first time.

A comprehensive dynamic model of the spinning UAV with two rotors positioned

at an offset from the fuselage’s COM is developed considering the blade element

theory. This dynamic model is then used to find the optimal configuration, i.e.,

optimal aerodynamic characteristics of the rotor and the streamline-shape fuselage

for inducing the largest lift and smallest drag simultaneously. More specifically, two

possible configurations are explored: (1) a symmetric configuration, in which the

rotors are positioned at the same distance from the fuselage’s COM but in the opposite

directions along y-axis and having opposite tilting angles about the y-axis, and (2) an

asymmetric configuration, in which the rotors are positioned on top of each other with

different heights and with an offset w.r.t the fuselage’s COM. From this point on, the

first configuration is called “bispinner” and the second one is called “monospinner”.

Furthermore, equilibrium states or hover solutions for both configurations are

found and a linear time-invariant control strategy is developed to control attitude

and position of the vehicle. In addition, an optimization problem is defined and

optimal configurations that yield the most efficient in-position hovering and trajectory

tracking for both configurations are formulated and design guidelines are provided.

In equilibrium, a pseudo in-place hovering is achieved in which case yawing and

precession speeds of the spinner will not be zero, but bounded. Furthermore, for the
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first time, it is shown that power consumption for the flight can be further reduced

by introducing a tilting angle between the rotor and the fuselage’s principle axis.

In summary, the following enlists major contributions of this thesis:

• Modeling the effects of the freestream velocity on propeller’s thrust forces and

moments

• Complete mathematical modeling of a spinning UAV incorporating all the gy-

roscopic moments and cross-coupling of angular momentum in the system as

well as considering a streamline-shape fuselage.

• Introducing optimal configurations for quadcopters in terms of stability and

maneuverability and using dihedral and twist angles of the rotors

• Fault tolerant control of a quadcopter with tilted rotors and with a rotor failure

• Optimal-power hover solution of a quadcopter with a rotor failure

• Using Generalized Voronoi Diagram (GVD), an algorithm to find the best land-

ing spot with the largest clearance from the obstacles is proposed which leads

to finding an optimal trajectory for emergency landing

• Using RRT*-type randomized motion planning algorithm an optimal trajectory

towards the landing spot is planned and tracked by the vehicle for landing

• Introducing the tilting angle between the rotors and fuselage’s principle axis in

spinning UAVs and investigating its effects on power consumption and flight

performance
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• Presenting optimal configurations for spinning UAVs that would yield the most

efficient design for hovering and trajectory tracking along with providing design

guidelines
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2

Multi-rotor UAV Modeling with

Revised Propeller Dynamics

This chapter presents mathematical modeling for multi-rotor UAVs. We begin with

presenting a mathematical model of thrust force and moments of a propeller in pres-

ence of freestream, this proposed propeller model is used to derive equations of motion

of a quadcopter with angled thrust vectors. Also equations of motion of a spinning

UAV with two rotors and streamline-shape fuselage.

Throughout the thesis, matrices are represented by straight boldface letters and

all vectors are represented by italicized boldface letters. For example, rotation matrix

from frame i to frame j is represented by jRi. In addition, the term Iωωωp denotes ωωω

belongs to p and is expressed in frame I. Angular velocity vector of the vehicle

is represented by ωωωB = (p, q, r)T where p, q and r are roll, pitch and yaw rates
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respectively. Also, 2-Norm of ωωω is represented by ‖ωωω‖ and absolute value of s is

shown by |s|.

2.1 Propeller Model in Presence of Freestream

Freestream velocity may affect propeller’s performance depending on its direction

and magnitude. Generally, these effects could change propeller’s performance in two

ways: i) changing the effective angle of attack of the blades; and ii) changing the local

airflow velocity over the blades. The former effect is caused when there is a freestream

with its velocity vector parallel to the angular velocity vector of the propeller while

the latter is caused by any freestream with its velocity vector perpendicular to the

angular velocity vector of the propeller. Studying these effects not only helps us to

derive a more realistic mathematical model for multi-rotors but also helps to find

more stable and power-optimal configurations for such vehicles.

Suppose we have a propeller turning at angular velocity ωωωp as expressed in a frame

attached to its COM as shown in Fig. 2.1. The propeller has two blades of radius

Rb and is assumed to have constant chord c. For simplicity, first, we assume there is

an almost uniform freestream with velocity vector VVV ∞1 , as shown in blue in Fig. 2.1,

which is parallel to the y-axis.

Consider a blade element (small hashed area in Fig. 2.2) of length c and differential

width drb where rb is the distance of the blade element from the root of the blade.

As shown in Fig. 2.2, the rotation of the blade generates relative air flow velocity

with magnitude rb‖ωωωp‖, over each blade element. As the propeller is turning, the
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1

Fig. 2.1. Schematic of a propeller with a frame attached to its COM.

relative air flow velocity over the blade element could either be increased or decreased

depending on the azimuth angle of the blade and direction of the freestream velocity.

The azimuth angle ψp is defined as the angle between the blade and the direction of

VVV ∞1 . Therefore, the resultant relative air flow velocity over each blade element can

be written as:

v = rb‖ωωωp‖+ ‖VVV ∞1‖ sinψp (2.1)

1

Fig. 2.2. A propeller in presence of freestream.
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In Fig. 2.2, for the advancing blade (0 ≤ ψp ≤ π), freestream velocity increases

the relative air flow velocity over the blade and for the retreating blade (π ≤ ψp ≤

2π), it decreases the relative air flow velocity. The changes in the relative air flow

velocity with azimuth angle affects the overall thrust of the propeller and it generates

a moment in the direction of the freestream velocity as shown in blue.

Therefore, using (2.1) and according to Blade Element Theory, thrust force and

moments of each blade element can be calculated as follows:

dfp =
1

2
ρacCLv

2drb (2.2)

dτdp =
1

2
ρacCDv

2rbdrb (2.3)

dτp =
1

2
ρacCLv

2rb sinψdrb (2.4)

where ρa represents air density and CL and CD are the lift and drag coefficient of the

airfoil of the blade respectively. Also, fp represents thrust force of the blade element,

τdp represents the moment due to drag force of the blade element and τp represents

the moment due to change in thrust force with respect to the azimuth angle of the

blade.

By integrating (2.2), (2.3) and (2.4) over blade radius rb and azimuth angle ψp,

average thrust force and the average moments for one blade as functions of freestream

velocity and angular velocity of the propeller can be calculated as follows:
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fp =
1

2
ρacCL

(
2R3

b

3
‖ωωωp‖2 + ‖VVV ∞1‖2Rb

)
(2.5)

τdp =
1

4
ρacCD

(
R4
b‖ωωωp‖2 + ‖VVV ∞1‖2R2

b

)
(2.6)

τp =
1

2
ρacCLR

3
b‖ωωωp‖‖VVV ∞1‖ (2.7)

Note that by assuming zero freestream velocity, equations (2.5), (2.6) and (2.7)

yield the simplified model for thrust force and moments of a propeller which is widely

used in the literature (i.e., [4], [18], [23], [29]).

Using the proposed model, simulation results for two complete turns of a propeller

with angular velocity ‖ωωωp‖ = 900 rad/s in presence of freestream velocity is presented

in Fig. 2.3. Note that the direction of rotation and freestream velocity are the same

as those in Fig. 2.2. The remaining parameters of the simulations are as follows:

c = 0.03 m, CL = 1.022, CD = 0.01, Rb = 0.08 m and ρa = 1.225 kg/m3. In Fig. 2.3,

the top plot presents variations of thrust force with respect to blade azimuth. The red

color represents the thrust force when ‖VVV ∞1‖ = 0, which is constant, meaning that

the relative air flow velocity over the blade element is constant for all azimuth angles.

The blue color, represents thrust force of the propeller as a function of azimuth angle

when freestream velocity is nonzero, ‖VVV ∞1‖ = 10 m/s. Comparing both scenarios,

it can be seen that for nonzero freestream velocity and for 0 ≤ ψp ≤ π thrust force

is increased while for π ≤ ψp ≤ 2π thrust force is decreased which is due to higher

relative air flow velocities on the advancing blade than that over the retreating blade.

The yellow color shows the average of thrust force of the propeller when ‖VVV ∞1‖ = 10
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m/s. Results show that in presence of nonzero freestream velocity the average thrust

force of the propeller increases.
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Fig. 2.3. Simulation results for thrust force and moments of a propeller
in presence of freestream.

The middle and bottom plots in Fig. 2.3 present variations of the moments due

to drag and freestream (τdp and τp) versus azimuth angle respectively. The red color
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represents the moment when ‖VVV ∞1‖ = 0 m/s, blue color represents variations of

moment in presence of freestream velocity ‖VVV ∞1‖ = 10 m/s and the yellow color

represents the average moment of the propeller when ‖VVV ∞1‖ = 10 m/s.

To continue investigating the effects of freestream on propeller’s performance, as

shown in Fig. 2.4, the freestream velocity vector, VVV ∞2 , is parallel to the angular

velocity vector of the propeller, ωωωp, as expressed in the frame attached to it.

2

Fig. 2.4. Propeller in presence of freestream. The freestream velocity
vector VVV ∞2 is assumed to be parallel with the angular velocity vector
of the propeller ωωωp.

Suppose the propeller is turning at angular velocity ωωωp as shown in Fig. 2.5. In

absence of freestream, there will be an airflow velocity vector rbωωωp over each blade

element as shown in green. Also, for each blade element, the angle of attack (AOA)

Θ is defined as the angle between the chord of the blade element and the local airflow

velocity vector rbωωωp.

Now, consider an almost uniform freestream with velocity vector VVV ∞2 in the pos-

itive direction of z-axis as shown in blue in Fig. 2.5 top. As shown, the freestream
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2

2

Fig. 2.5. Propeller in presence of freestream. The freestream velocity
vector VVV ∞2 is assumed to be parallel with ωωωp. On top, VVV ∞2 is the
positive direction of z-axis and in bottom it is assumed to be in the
opposite direction.

changes the direction and magnitude of the resultant airflow velocity over the blade

element as shown in red in Fig. 2.5 top. Therefore, the new angle of attack Θ′, in

presence of freestream is greater than that in absence of freestream (Θ′ ≥ Θ).

However, if the freestream velocity vector is in the negative direction of z-axis

(see Fig. 2.5 bottom), it changes the direction and magnitude of the resultant airflow

velocity vector such that it decreases the effective angle of attack (Θ′ ≤ Θ).

The importance of studying AOA is because it directly affects the lift coefficient

of the blade element and consequently affects the thrust force generated by the pro-
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peller. At low speed flight (subsonic) and assuming small angles, the lift coefficient

CL changes almost linearly with AOA which can be written as follows [37]:

∆CL
∆Θ

= σ (2.8)

where σ is a constant which is determined through experiments in wind tunnel. From

(2.2), any increase (decrease) in CL increases (decrease) the thrust force of the blade

element. Therefore, in summary the results are as follows:

• Any freestream with positive (negative) z-component velocity (expressed in the

propeller’s frame) increases (decreases) the AOA which increases (decreases)

the thrust force.

Furthermore, to formulate the changes in thrust force of the propeller, first we

can write the changes in AOA of each blade element as follows:

∆Θ = Θ−Θ′ = arctan
‖VVV ∞2‖
‖rbωωωp‖

(2.9)

Finally, using (2.2), (2.8) and (2.9), the changes in thrust force of the propeller

can be written as follows:

∆fp =
1

4
ρacσR

2
b‖VVV ∞2‖‖ωωωp‖ (2.10)

From (2.10), it can be seen that the changes in thrust force is proportional to the

magnitude of the freestream velocity vector VVV ∞2 .
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In summary, we presented the significance of the effects of freestream on perfor-

mance of propellers. We formulated these effects as functions of propeller parameters

and also the parameters of the freestream. Table 2.1 presents all parameters involved

in the proposed propeller model. We continue this chapter by presenting mathemat-

ical modeling of two types of multi-rotor UAVs, namely quadcopters and spinners,

using the proposed propeller model.

Table 2.1.
Important parameters for modeling of propellers.

ωωωp angular velocity vector of the propeller

Θ angle of attack

CL, CD lift and drag coefficients of the airfoil

VVV ∞ freestream velocity vector

σ slope of CL vs Θ curve for the airfoil

Rb blade radius of the propeller

c chord of the blade

rb distance from blade element to root of the blade

ρa air density

fp thrust force of the propeller

τdp moment of the propeller due to drag

τp moment of the propeller due to asymmetrical lift distribution
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2.2 Dynamic Model of Quadcopters with Angled Thrust Vectors

This section presents mathematical modeling of quadcopters with angled thrust

vectors by utilizing the proposed model of the propeller in the previous section. Liter-

ature pertinent to the mathematical modeling of quadcopters and their flight control

is vast. In our derivation, we assume a full model of the gyroscopic moments and

cross-coupling of angular momentum in the system. More specifically, we derive the

dynamic model of quadcopters assuming that: i) the thrust vector for each rotor

would make a non-zero angle with the vertical axis (i.e., the sagittal suture) of the

quadcopter; and ii) the center of mass (COM) of the quadcopter does not lie on

the same plane where the center-of-mass of all motors lie on (blue plane shown in

Fig. 2.6). However, we still assume that the quadcopter under study has two axes of

congruency.

The angle between the thrust vector of each rotor and the vertical axis of the

fuselage is further divided into: i) the dihedral angle; and ii) twist (i.e., lateral tilting)

angle ( Figs 2.7 and 2.8). We assume that the central hub of all four rotors lie on

a flat horizontal plane (blue plane in Fig. 2.6), called flat plane from this point on,

from which the location of the COM is referenced (i.e., the COM can be either above,

below, or right on this plane).

The dynamic model developed in this section will, therefore, have three additional

terms in comparison to that in the flat quadcopters (this is the term used for the

original quadcopters, where the COM and the rotor hubs are all on the same plane),
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Fig. 2.6. Quadcopter in “+” configuration. Body frame is shown
in blue and is attached to the center-of-mass of the quadcopter. A
frame, shown in blue, is attached to each motor in order to determine
orientation of the motors with respect to body frame. Motors are
located at distance l and h from z-axis and x-y plane of the body
frame respectively.

as: dihedral angle βi, twist angle αi, and the distance between the COM and the

flat plane h (please note that h could take positive and negative values, measured

in z-direction of the body frame). In existing flat model of quadcopters one has:

βi = αi = d = 0. We use Newton’s method for deriving the dynamic model of the

quadcopter. Also, without the loss of generality, we assume a “+” configuration.

The body frame BO − BxByBz (red color in Fig. 2.6) is attached to the center

of mass of the vehicle. Four frames named MiO − MixMiyMiz (blue color in Fig. 2.6)

are attached to motors. Motors are turning with angular velocities γ̇i (i = 1, 2, ..., 4)

about zMi
-axis. Position of the vehicle is expressed in the inertial frame I. Also Bωωωpi,I
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Fig. 2.7. Twist angle α1 about the x-axis of the motor frame M1.

Fig. 2.8. Dihedral angle β1 about the y-axis of the motor frame M1.

indicates that ωωω belongs to the ith propeller with respect to an inertial frame I and

is expressed in the body frame B. Finally, we represent a rotation matrix about axis

A by angle θ as RA(θ).

Orientation of the body frame with respect to the inertial frame can be captured

by the rotation matrix IRB from body frame to inertial frame. This rotation matrix

is a function of time and its evolution in time can be obtained as follows:

IṘB = IRB sk(BωωωB,I) (2.11)
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where sk(BωωωB,I) is the skew-symmetric matrix of angular velocity of the body with

respect to the inertial frame as expressed in the body frame BωωωB,I = [p, q, r]T .

Likewise, the orientation of each motor frame Mi can be obtained with respect to

the body frame. First the position of the origin of frame Mi with respect to body

frame from the origin of the body frame can be written as:

BOOOMi
= RzB((i− 1)

π

2
)


l

0

h

 , (i = 1, 2, ..., 4) (2.12)

Since we are using a quadcopter in “+” configuration, we assume that the motors

are evenly distributed by angle π
2

about zB-axis. Therefore, the transformation from

frame Mi to body frame is obtained as follows:

BRMi
= Rz((i− 1)

π

2
)Ry(βi)Rx(αi) , (i = 1, 2, ..., 4) (2.13)

Suppose the quadcopter is consisted of several rigid bodies and it is considered

to be symmetric about its axes of rotation. Because of the symmetry, the inertia

tensor of the vehicle, IB, will be diagonal and is expressed in the body frame. We

also assume that the moment of inertia of the propellers, Ip, are very small compared

to IB. We can neglect drag force in angular motion of the body by assuming very
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small angular velocities. Considering these simplifying assumptions, the rotational

motion is governed by the following equation:

τττ = IBω̇ωωB,I +
4∑
i=1

IpBω̇ωωpi + BωωωB,I ×
(
IBωωωB,I +

4∑
i=1

IpBωωωpi

)
(2.14)

where Bωωωpi is the angular velocity vector of the ith propeller with respect to the

inertial frame as expressed in the body frame which can be written as follows:

Bωωωpi = BRMi
[0, 0, γ̇2

i ]
T (2.15)

where γ̇i is the angular velocity of the ith propeller about z-axis of frame Mi. In

(2.14), τττ is the external moment generated by thrust forces and the reaction from

propellers plus the drag of the fuselage expressed in the body frame (τττ dB). Thrust

force and reaction moment of each propeller as expressed in the frame Mi, can be

calculated using the proposed propeller model in the previous section. The external

moment τττ can be written as follows:

τττ = τττ dB +
4∑
i=1

(
BOOOMi

× BRMi

Mifffpi + BRMi

(
Miτττ pi + Miτττ dpi

))
(2.16)

The position of the vehicle in inertial frame is shown by Cartesian coordinates ddd =

[d1, d2, d3]T . Therefore, the equation governing translational motion can be written

as follows:
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md̈dd = IRB

4∑
i=1

(
BRMi

Mifffpi

)
+mggg (2.17)

wherem is total mass of the vehicle and ggg is gravitational acceleration vector expressed

in the inertial frame. Note that we assume small translational velocities, therefore

the drag forces due to translational motion can be neglected in (2.17).

2.3 Dynamic Model of Spinning UAVs with Streamline-shape Fuselage

In this section, dynamic model of a spinning UAV including aerodynamic model

of a propeller in presence of freestream velocity is presented for the first time followed

by introducing two specific configurations namely, monospinner and bispinner.

Fig. 2.9 shows a vehicle of mass m with a streamline-shape fuselage. Two rotors

are positioned at ppp1 = (0, l1, h1) and ppp2 = (0, l2, h2) in the y-z plane of the body

frame, B, as shown in blue. The ith rotor can rotate independently about the y-

axis of the body frame by angle δi with rotations in the direction of positive y-axis

resulting in positive angles. A propeller is attached to each rotor turning with angular

velocity ωpieeepi where ωpi is the magnitude of angular velocity and eeepi is the unit vector

determining the direction of rotation of the ith propeller in the body frame. Also, the

angular velocity of the fuselage with respect to the inertial frame as expressed in the

body frame is represented by ωωωB = (p, q, r)T . Furthermore, it is assumed the propeller

has two blades with chord cp and radius Rp. The fuselage is to be streamline-shape,
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aerodynamic and similar to the propeller with four blades with chord cB and radius

RB. It is also assumed that the chord is constant throughout the radius of the blades.

R

c

R
Bc

B

Fig. 2.9. A spinning UAV with two rotors and streamline-shape fuselage.

The moment of inertia matrix of the propeller is approximated by the moment

of inertia of a disk as expressed in the body frame by Ip = diag(Ipxx, I
p
yy, I

p
zz). The

moment of inertia matrix of the fuselage is also represented by a diagonal matrix

IB = diag(IBxx, I
B
yy, I

B
zz). Furthermore, it is assumed that the fuselage is symmetric

such that IBxx = IByy. In addition, the position of the vehicle expressed in inertial

frame is denoted by ddd = (d1, d2, d3). The equations of motion can now be written as

follows:

τττ = IBω̇ωωB +
2∑
i=1

Ipω̇ωωpi + sk(ωωωB)
(
IBωωωB +

2∑
i=1

Ip(ωωωpi +ωωωB)
)

(2.18)

τττ =
2∑
i=1

(
pppi × fffpi

)
+

2∑
i=1

τττ dpi + τττ dB +
2∑
i=1

τττ pi (2.19)

md̈dd = IRB

( 2∑
i=1

fffpi + fffB

)
+mggg (2.20)
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In the right hand side of (2.18), the first two terms represent the moments due

to angular accelerations of the fuselage and propellers. The third term represents

cross-coupling of angular momentum due to rotation of the fuselage and propellers

and sk(ωωωB) represents the skew-symmetric matrix of the angular velocity vector of

the fuselage. In the right hand side of (2.19), the first term represents the moment

due to propeller’s thrust force about the center of mass of the vehicle, the second

term represents the sum of reaction moments of the propellers, the third term is

the moment due to drag of the fuselage and the last term is the sum of moments

due to asymmetrical lift distribution over the advancing and retreating blades of the

propellers.

In (2.20), fffB represents thrust force generated by the streamline-shape fuselage,

ggg is the gravitational acceleration and IRB is the rotation matrix from body frame

to inertial frame. Since the fuselage is turning with yaw rate r about the z-axis

of the body frame, it generates a thrust force fffB along with a moment τττ dB due to

its aerodynamic drag, in the direction of z-axis of the body frame. These can be

calculated using Blade Element Theory as follows:

fffB =
1

3
ρacBCLBR

3
Br

2 eeefffB (2.21)

τττ dB =
1

4
ρacBCDBR

4
Br

2 eeeτττdB (2.22)

where ρa is the air density and CLB and CDB are lift and drag coefficients of the

fuselage respectively. Also, eeefffB and eeeτττdB represent unit vectors showing the direction
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of thrust force and moment of the fuselage respectively. In both propellers and the

fuselage, NACA 4415 airfoil is used where its lift and drag coefficients, CL and CD

respectively, as a function of angle of attack Θ can be obtained as follows [38]:

CL = 0.1Θ + 0.5 CD = 0.006Θ + 0.04 (2.23)

Note that (2.23) is only valid for −10◦ ≤ Θ ≤ 10◦.

2.3.1 Effects of Freestream in Spinning UAVs

In this section, based on the propeller model proposed in this chapter, we derive

equations to determine the effective angle of attack, thrust force and moments of the

propellers in a spinning UAV.

Suppose a propeller is turning with angular velocity vectorωωωp as shown in Fig. 2.10.

The rotor is positioned at distance l from COM of the vehicle and is tilted by angle δ

about the y-axis of the body frame and the fuselage is spinning at yaw rate r about

the z-axis of the body frame as shown in Fig. 2.10. As the vehicle is spinning, the

propeller experiences an almost uniform freestream expressed in the body frame as:

BVVV ∞ = (rl, 0, 0)T (2.24)

Because of the tilting angle δ, this freestream will have vertical and horizontal

components in the propeller’s plane. According to Blade Element Theory, the vertical

component changes the effective angle of attack of the blades as follows:
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Θeff = θ + arctan
rl sin δ

|Rp(‖ωωωp‖+ r cos δ)|
(2.25)

where θ is the pitch angle of the blade, Rp is the blade radius and (‖ωωωp‖ + r cos δ)

is the resultant angular velocity of the propeller with respect to the inertial frame.

Equation (2.25) indicates that depending on the sign of tilting angle and the yaw

rate, the effective angle of attack could be either increased or decreased.

l

Fig. 2.10. Effects of freestream on propeller’s performance in a spinning UAV.

We have shown that the horizontal component of freestream velocity (perpendic-

ular to the angular velocity vector of the propeller) changes the local airflow velocity

over each blade element. Also, the vertical component of freestream velocity (parallel

to the angular velocity vector of the propeller) changes the effective angle of attack of

the blade elements. Therefore, considering these changes and according to equations

(2.5), (2.6) and (2.7), thrust force and the moments generated by the propeller can

be written as follows:

fffp = ρacpCLp

(
R3
p‖ωωωp‖2

3
+
R3
pr

2 cos2 δ

3
+
Rpr

2l2 cos2 δ

2
+

2R3
pr‖ωωωp‖ cos δ

3

)
eeefffp (2.26)
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τττ dp = ρacpCDp

(
R4
p‖ωωωp‖2

4
+
R4
pr

2 cos2 δ

4
+
R2
pr

2l2 cos2 δ

2
+
R4
pr‖ωωωp‖ cos δ

2

)
eeeτττdp (2.27)

τττ p = ρacpCLp

(
R3
p‖ωωωp‖rl cos δ +R3

pr
2l cos2 δ

3

)
eeeτττp (2.28)

where eeefffp , eeeτττdp and eeeτττp are unit vectors expressed in the body frame to determine

the directions of propeller’s thrust force, reaction moment and the moment due to

asymmetrical lift distribution respectively.

Finally, by adding the following constraints to the system, two specific configu-

rations namely monospinner and bispinner, are introduced. The first configuration

is achieved when l1 = l2 = l, δ1 = δ2 = δ and h2 is slightly larger or smaller than

h1 such that the second rotor can be positioned either above or below the first rotor

(e.g., h2 = 1.1h1 = h) . This configuration is also known as monospinner since the

two rotors could be replaced by a single rotor which yields to the simplest possible

configuration for a multi-rotor flying vehicle. The second configuration is defined such

that l2 = −l1 = l, δ2 = −δ1 = δ and h1 = h2 = h, also known as bispinner which

provides more stability and improved controllability compared to the monospinner.
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3

Flight Control

This chapter presents development of flight control strategies for multi-rotor UAVs.

We begin with presenting a control strategy for quadcopters with angled thrust vec-

tors. Next, a new control strategy is developed for quadcopters experiencing a rotor

failure. In this new control strategy, first a new hover definition is provided and the

control strategy is built upon it. The new control strategy is then extended to be

utilized in spinning-type UAVs with streamline-shape fuselage. In the end, nonlinear

simulation are presented to validate the results.

3.1 Flight Control of Quadcopters with Angled Thrust Vector

This section presents the development of a control strategy for the quadcopter

model presented in Section 2.2. We use a nested control structure to control orienta-
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tion and position of the vehicle. Suppose we have a quadcopter as shown in Fig. 3.1.

The body frame B is shown in red and is attached to the COM of the vehicle. As

defined in the previous chapter, we represent the position of the vehicle in the inertial

frame with the vector ddd = [d1, d2, d3]T .

h

Fig. 3.1. Quadcopter with tilted rotors in “+” configuration. Body
frame is shown in blue and is attached to the center-of-mass of the
quadcopter.

The orientation of the vehicle (body frame) with respect to the inertial frame is

represented by the Euler angles (φ, θ, ψ), where φ is the roll angle about the x-axis

of the body frame, θ is the pitch angle about the y-axis of the body frame and ψ is

the yaw angle about the z-axis of the body frame. Therefore, using roll-pitch-yaw

rotation sequence, one can find the rotation matrix from body frame to inertial frame

as follows [39] (details are shown in Appendix A):
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IRB =


cθcψ sφsθcψ − cφsψ sφsψ + cφsθcψ

cθsψ cφcψ + sφsθsψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 (3.1)

where s and c represent sin and cos functions.

In addition, since each rotor has a tilting angle, therefore, according to (2.13),

four rotation matrices from motor frames Mi to body frame can be found as follows:

BRM1 =


cβ1 sα1sβ1 cα1sβ1

0 cα1 −sα1

−sβ1 cβ1sα1 cα1cβ1

 (3.2)

BRM2 =


0 −cα2 sα2

cβ2 sα2sβ2 cα2sβ2

−sβ2 cβ2sα2 cα2cβ2

 (3.3)

BRM3 =


−cβ3 −sα3sβ3 −cα3sβ3

0 −cα3 sα3

−sβ3 cβ3sα3 cα3cβ3

 (3.4)

BRM4 =


0 cα4 −sα4

−cβ4 −sα4sβ4 −cα4sβ4

−sβ4 cβ4sα4 cα4cβ4

 (3.5)
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Now, using (3.1) to (3.5), equations of motion are available in the body frame.

Notice that since quadcopters fall in the category of under-actuated robots, only four

out of its six degrees of freedom can be directly controlled, three of which being

the Euler angles determining orientation of the vehicle and one of which being the

altitude of the vehicle. However, the remaining two translational degrees of freedom

are controlled indirectly by manipulating roll and pitch angles. In the proposed

nested control structure, in the innermost loop, we use proportional and derivative

(PD) controller to control the orientation of the vehicle as follows:

τφ = kpφ(φd − φ) + kdφ(φ̇d − φ̇) (3.6)

τθ = kpθ(θd − θ) + kdθ(θ̇d − θ̇) (3.7)

τψ = kpψ(ψd − ψ) + kdψ(ψ̇d − ψ̇) (3.8)

where τφ, τθ and τψ are the three components of (2.14) as τττ = [τφ, τθ, τψ]T , kp and kd

represent proportional and derivative gains of the controller respectively and φd, θd

and ψd represent the desired values for Euler angles. Normally, the desired values do

not experience much changes, therefore, it is safe to assume φ̇d = θ̇d = ψ̇d = 0 [40].

Also, ψd is commanded to the controller and is known a priori.

Furthermore, the rate of change of Euler angles, φ̇, θ̇ and ψ̇ can be obtained from

the body angular rates of the vehicle ωωωB = [p, q, r]T . First, from (2.14), p, q and r
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can be calculated and then using the following kinematic equation, Euler angle rates

can be obtained as follows [39]:


φ̇

θ̇

ψ̇

 =


1 tan θ sinφ tan θ cosφ

0 cosφ − sinφ

0 sinφ/ cos θ cosφ/ cos θ




p

q

r

 (3.9)

Eventually, by integrating (3.9), Euler angles can be obtained.

To find φd, θd, first we consider the position control problem. Suppose the desired

position of the vehicle is to be at dddd = [dxd , dyd , dzd ]
T as expressed in the inertial

frame. To control the x- and y-components of position, we define a new frame named

B1 which is attached to the COM of the vehicle and its x-y plane is parallel to the x-y

plane of the inertial frame and it only can rotate about its z-axis by angle ψ (the yaw

angle). It is assumed that the x-axis of B1 represents the front of the vehicle. We also

represent the total thrust force of all propellers with a new variable fffΣ = [fx, fy, fz]
T

as expressed in the frame B1. Therefore, to move the vehicle in the x-direction of B1,

we should pitch the nose down by pitch angle θ and generate a force (acceleration)

in the x-direction. If we limit pitch and roll angles to accept only small values, one

can write the following equation:

fx = ‖fffΣ‖ sin θ ≈ ‖fffΣ‖θ (3.10)
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Afterwards, by controlling the velocity of the vehicle in this direction, using a

simple proportional control law, we can calculate the desired force to accelerate the

vehicle towards the desired position as follows:

fxd = ‖fffΣ‖θd = mkpv,x

(
B1vxd − B1vx

)
(3.11)

where B1vx is the x-component of the velocity vector of the vehicle as expressed in the

frame B1 which can be obtained by integrating (2.17) and transforming the resulting

vector to frame B1. Also, B1vxd is the desired x-component of the velocity vector of

the vehicle in the frame B1 which can be calculated by using another proportional

control law as follows:

B1vxd = kp,x

(
B1dxd − B1dx

)
(3.12)

where B1dxd is the desired x-component of the position vector of the vehicle as ex-

pressed in frame B1 and B1dx is the x-component of the position vector of the vehicle

by integrating (2.17) twice. Note that kpv,x and kp,x are the proportional gains of the

corresponding control law. Finally, by combining (3.10), (3.11) and (3.12), we can

calculate the desired pitch angle as follows:

θd =
m

‖fffΣ‖
kpv,x

(
kp,x
(
B1dxd − B1dx

)
− B1vx

)
(3.13)
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Similarly, the desired roll angle can be calculated as follows:

φd =
m

‖fffΣ‖
kpv,y

(
kp,y
(
B1dyd − B1dy

)
− B1vy

)
(3.14)

In addition, the transformation from inertial frame to the frame B1 can be written

as follows:

B1RI =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (3.15)

In the end, to control the altitude of the vehicle or the z-component of the position

vector of the vehicle as expressed either in the inertial frame or the frame B1, we use

another PD controller as follows:

(
fz −m‖ggg‖

)
= kp,z(dzd − dz) + kd,z(ḋzd − ḋz) (3.16)

where dzd represents the desired altitude and dz represents the altitude of the vehicle

calculated from integrating the translational equation of motion. Also, kp,z and kd,z

represent proportional and derivative gains of the PD controller of altitude. Fig. 3.2

presents a block diagram of the proposed control structure for a quadcopter with

titled rotors. Note that in the control mixing block, all the input moments and forces

are converted to angular velocities of the propellers with the help of equations (2.14)

and (2.17).
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Equations

of 

Motion

Control

Mixing

Attitude

Controller

Position

Controller

Fig. 3.2. Block diagram of the proposed nested loop control structure
for a quadcopter with tilted rotors.

The proposed controller is tested on a vehicle with the following specifications and

nonlinear simulation results for position control are presented in Fig. 3.3.

m = 0.5 kg, |αi| = |βi| = 0.05 rad, Ip = diag([0, 0, 1.5× 10−5]) kg.m2

IB = diag([3.2× 10−3, 3.2× 10−3, 5.5× 10−3]) kg.m2

h = 0, l = 0.17 m, ρa = 1.022 kg/m3, c = 0.03 m, CL = 1, CD = 0.01

kpφ = kpθ = kpψ = kp,z = 2, kdφ = kdθ = kdψ = kd,z = 1,

kpv,x = kpv,y = 0.3, kp,x = kp,y = 0.1

φ0 = θ0 = ψ0 = 0, ddd0 = [0, 0, 10]T m, dddd = [5, 5, 15]T m, ψd = 1 rad

where ddd0 is the initial position of the vehicle and dddd is its desired position.
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As it can be seen in Fig. 3.3, the proposed simple controller does a good job in

tracking the reference values.

3.2 Flight Control of Quadcopters with One Rotor Failure

This section presents development of a control strategy for a quadcopter experi-

encing a rotor failure. We use the quadcopter model presented in the previous chapter

and for simplicity we assume all the tilting angles of the rotors (dihedral and twist

angles) and the offset of the COM h are zero. Therefore, the thrust vector of all the

propellers will be pointing in the positive direction of the z-axis of the body frame as

shown in Fig. 3.4.

h

Fig. 3.4. Quadcopter in “+” configuration. All the tilting angles are set to zero.

Generally, in multi-rotor UAVs, hovering is defined as maintaining a position

with zero angular and linear velocities. However, in case of one rotor failure in a

quadcopter and in order to control the attitude and position of the vehicle, a new
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hover definition is required and the old hover solutions no longer hold true. The new

hovering is defined as maintaining an altitude while rotating with constant angular

velocity about a unit vector that is fixed with respect to the vehicle [18].

Without loss of generality, suppose that motor number 4 (see Fig. 3.4) is failed.

Because of the unbalanced moments of the remaining functioning propellers, the

vehicle starts rotating about a unit vector nnn (as expressed in the body frame) with

angular velocity ωωωB as shown in Fig. 3.5. The evolution of this vector in time can be

written as follows:

ṅnn = −ωωωB × nnn (3.17)

Fig. 3.5. Representation of the unit vector nnn in a quadcopter after the
failure of motor number 4. The green circle represents the periodic
motion of the quadcopter about nnn. As it can be seen, nnn and ωωωB are
parallel and they both are in parallel with the z-axis of the inertial
frame.
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According to the new hover definition, in hover, we want this unit vector to be

fixed with respect to the vehicle. If nnn is fixed, (3.17) should be equal to zero. In other

words, in hover, nnn is a unit vector stationary in the inertial frame as expressed in the

body frame which is parallel to ωωωB. Setting (3.17) to zero and knowing that nnn is a

unit vector, one can write the followings (note that an overbar indicates equilibrium

or hover values):

ṅnn = 0→ ‖n̄nn‖ = ε‖ω̄ωωB‖ → ε =
1

‖ω̄ωωB‖
(3.18)

Also, in hover, the projection of total thrust forces of all propellers onto n̄nn should

balance the weight of the vehicle which results in adding the following constraint to

the system:

4∑
i=1

(
fffpi .n̄nn

)
= m‖ggg‖ (3.19)

As the vehicle is turning with constant angular velocity ω̄ωωB, the COM of the

ith propeller goes through a rotation about n̄nn which generates an almost uniform

freestream velocity VVV ∞ = (0, 0, r̄l) over the propeller as expressed in the body frame,

where l is the distance of the COM of the propeller from the COM of the vehicle and

r̄ is the yaw rate of the vehicle in hover. Considering this freestream velocity vector,

using the proposed propeller model and the resultant angular velocity of the airflow

over the propellers, equations (2.2), (2.3) and (2.4) can be rewritten as follows:
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dfp =
1

2
ρacCL

(
rb
(
‖ωωωpi‖+ r̄

)
+ r̄l sinψpi

)2

drb (3.20)

dτdp =
1

2
ρacCD

(
rb
(
‖ωωωpi‖+ r̄

)
+ r̄l sinψpi

)2

rbdrb (3.21)

dτp =
1

2
ρacCL

(
rb
(
‖ωωωpi‖+ r̄

)
+ r̄l sinψpi

)2

rb sinψdrb (3.22)

By integrating the above equations over the blade radius and averaging for all

azimuth angles, average total thrust force and moments of the ith propeller can be

calculated as follows:

fp = ρacCL

(
R3
b‖ωωωp‖2

3
+
R3
b r̄

2

3
+
Rbr̄

2l2

2
+

2R2
b r̄‖ωωωp‖

3

)
(3.23)

τdp = ρacCD

(
R4
b‖ωωωp‖2

4
+
R4
b r̄

2

4
+
R2
b r̄

2l2

2
+

2R4
b r̄‖ωωωp‖

2

)
(3.24)

τp = ρacCL

(
R3
b‖ωωωp‖r̄l +R3

b r̄
2l

3

)
(3.25)

Using equations (2.14) and (3.17)- (3.25), by setting angular accelerations to zero

and considering the proposed propeller model, a system of eight algebraic equations

for 11 unknowns are obtained. Three more equations are required to solve the system.

The unknowns are: p̄, q̄, r̄, n̄x, n̄y, n̄z, ε, ‖ω̄ωωp1‖, ‖ω̄ωωp2‖, ‖ω̄ωωp3‖, ‖ω̄ωωp4‖. Assuming that

motor number 4 is failed (‖ω̄ωωp4‖ = 0) and by adding the following constraints we will

end up with a system of 11 algebraic equations with 11 unknowns.

‖ω̄ωωp1‖ = ‖ω̄ωωp3‖ ρ =

(
‖ω̄ωωp2‖
‖ω̄ωωp1‖

)2

(3.26)
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where ρ is a tuning factor and a non-negative real number. Now there are 11

algebraic equations to be solved for 11 unknowns to obtain equilibrium values or

hover solution.

We assume Ip � IB. Also, since yaw is the dominant rotational motion, τττ dB in

(2.16) is assumed to oppose yaw motion only and is assumed to be proportional to

yaw rate with coefficient λ as follows:

τττ dB = (0, 0,−λr)T (3.27)

Using the reaction moment of the propeller and its angular velocity, the mechacnial

power of the propellers in hover can be calculated as follows:

P̄p = τ̄dp‖ω̄ωωp‖ (3.28)

As an example, consider a vehicle of mass m = 0.5 kg, Ixx = Iyy = 3.2 × 10−3

kg.m2, Izz = 5.5×10−3 kg.m2, l = 0.17 m, Ipzz = 1.5×10−5 kg.m2 and λ = 2.75×10−3

N.m.s/rad. The propellers have two blades with c = 0.03 m, CL = 1.022, Rb = 0.08

m and air density is assumed to be constant ρa = 1.225 kg/m3. Using (2.14), (3.17)-

(3.25), (3.26)- (3.28) and by performing a line search over the tuning factor ρ in (3.26),

the minimum-power hover solution can be found as follows:
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ρ = 0.38, n̄nn = (0, 0.25, 0.97)T , ω̄ωωB = (0, 5.11, 19.57)T rad/s

‖ω̄ωωp1‖ = ‖ω̄ωωp3‖ = −584.7 rad/s, ‖ω̄ωωp2‖ = 360.4 rad/s, ‖ω̄ωωp4‖ = 0

τ̄p1 = −τ̄p3 = (0, 0.013, 0)T N.m, τ̄p2 = (0.008, 0, 0)T N.m

τ̄p4 = 0, f̄p1 = f̄p3 = 2.06 N, f̄p2 = 0.94 N, f̄p4 = 0

P̄hover =
∑4

i=1 P̄pi = 46.52 W

(3.29)

Having defined the equilibrium (hover) states of the vehicle after failure in motor

number 4, we continue by presenting the control algorithm. A cascaded control

strategy is used to control attitude and position of the vehicle. First, using nonlinear

equations of rotational motion in (2.14), a linear time-invariant system is introduced

to be used in controlling the attitude of the vehicle or in other words control the

direction of the unit vector nnn. Second, it is shown that by controlling two attitude

degrees of freedom that are related to the translational motion (nx and ny), along

with sum of all the thrust forces, position of the vehicle can be controlled as well.

In controlling the attitude, the strategy is to give up control of the full atti-

tude after failure. Instead, only those attitude degrees of freedom related to trans-

lation motion of the vehicle will be controlled which is often called reduced atti-

tude control [23]. After failure, reduced attitude states are represented by a vari-

able ζζζ = (p, q, nx, ny) which includes pitch and roll rates of the vehicle and x- and

y-components of the unit vector nnn. By linearizing (2.14) and (3.17) about the equi-
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librium state ζ̄ζζ = (p̄, q̄, n̄x, n̄y), the deviations of ζζζ from ζ̄ζζ represented by ζ̃ζζ can be

described by the following linear time-invariant system:

˙̃
ζζζ = Aζ̃ζζ + Buuu, A =

∂
˙̃
ζζζ

∂ζ̃ζζ

∣∣∣∣
ζ̃ζζ=ζ̄ζζ

=



0 a 0 0

−a 0 0 0

0 −n̄z 0 r̄

n̄z 0 −r̄ 0


, B =

l

IBxx



0 1

1 0

0 0

0 0


(3.30)

where a and uuu are as follows:

a = IBxx−IBzz
IBxx

r̄ − Ipzz
IBxx

(‖ω̄ωωp1 + ω̄ωωp2 + ω̄ωωp3 + ω̄ωωp4‖)

u1 = (fp3 − f̄p3)− (fp1 − f̄p1)

u2 = (fp2 − f̄p2)

(3.31)

Also, the remaining degree of freedom to balance the weight of the vehicle can be

determined by the following constraint:

fp1 + fp2 + fp3 = f̄p1 + f̄p2 + f̄p3 (3.32)

By designing a linear controller for (3.30), the inner loop of the cascaded controller

is complete. In order to control the position of the vehicle, an outer control loop is

designed such that it generates reference signal for the inner control loop. This can
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be done first by finding the desired acceleration of the vehicle to get to the desired

position and then transforming it to the desired direction of the unit vector nnn.

To control the position of the vehicle, the desired acceleration can be found by

defining a new state variable d̃dd as expressed in the inertial frame, as the deviations of

the position of the vehicle ddd from its desired position dddd, behaving like a second order

system with damping ratio ξ and natural frequency ωn as follows:

d̈ddd = −2ξωn
˙̃
ddd− ω2

nd̃dd (3.33)

We define the total acceleration of the vehicle to be (d̈ddd − ggg) as expressed in the

inertial frame. In hover, we want d̈ddd = 0 so that the desired direction of the unit

vector nnn will be in the opposite direction of ggg. According to the Newton’s second law,

(3.19) and (3.33) one can write the following equation:

( 4∑
i=1

fffpi .n̄nn

)
nnnd = mIRT

B

(
d̈ddd − ggg

)
(3.34)

wherennnd represents the desired direction of the unit vectornnn which also determines the

desired direction of the average total thrust force vector of the quadcopter. Intuitively,

it means that if the average total thrust force vector is in the direction of nnnd, position

control can be achieved. Finally, nnnd can be calculated from (3.34) as follows:

nnnd =
mIRT

B

(
d̈ddd − ggg

)
∑4

i=1 fffpi .n̄nn
(3.35)
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In summary, the outer control loop controls the position of the vehicle and gen-

erates reference signal for the inner control loop which controls the reduced attitude

of the vehicle. Note that the inner loop should be faster than the outer loop due to

having faster dynamics.

For the example vehicle in (3.29) and using the calculated hover solution a linear-

quadratic regulator (LQR) is designed to stabilize the vehicle. For the LQR controller,

diagonal cost matrices R and Q are chosen with cost values 1 on the angular rates and

50 on deviations from the x- and y-components of n̄nn. In the translational controller,

damping ratio ξ and natural frequency ωn are chosen to be 0.7 and 1 respectively

for all translational degrees of freedom. From the parameters of the system used in

(3.29), A and B matrices are calculated as follows:

A =



0 −17.8534 0 0

17.8534 0 0 0

0 −0.9700 0 19.57

0.9700 0 −19.57


, B =



0 53.1250

53.1250 0

0 0

0 0


(3.36)

Consequently, the LQR control gain can be calculated as follows:

klqr =

−0.0152 0.5361 −2.1448 −1.5811

3.1632 −0.0759 −1.4141 1.5812

 (3.37)

Using (3.29), (3.36) and (3.37), the controller is implemented using the nonlin-

ear equations of motion to stabilize the vehicle. Simulation results are presented in

48



Fig. 3.6. In the simulations, it is assumed the vehicle is hovering at its initial position

ddd0 = (0, 0, 10) m and all motors are working properly. Suddenly at t0 = 0 motor

number 4 is turned off and the controller in (3.37) stabilizes the vehicle. The desired

position after failure is to be at dddd = (10, 0, 15) m.

From Fig. 3.6, it can be seen that the proposed simple control strategy does a good

job in controlling the position and reduced attitude of the vehicle. The oscillations in

the steady states are due the periodic nature of the newly defined hover condition. The

results show that even after a failure, altitude control can still be achieved because

in multi-rotor UAVs the motors are usually operating at around 50% duty cycle.

Therefore, even after losing two rotors, the UAV will still be able to maintain its

altitude. Also, variations of thrust force for all propellers are presented in Fig. 3.7

where they converge to their equilibrium values found in (3.29).

3.3 Flight Control of Spinning UAVs with Streamline-shape Fuselage

This section presents development of a control strategy for the spinning UAV

proposed in Chapter 2. The strategy is very similar to that of a quadcopter with

one rotor failure presented in the previous section. However, a few modifications

are required as the number of rotors is reduced to two and the fuselage has become

streamline-shape which generates extra lift in the system. First, we begin with finding

the equilibrium states (hover solution) of the vehicle.

49



0 5 10 15

Time in (s)

-5

0

5

10

15

20

P
os
it
io
n
in

(m
)

x

y

z

0 5 10 15

Time in (s)

-5

0

5

10

15

20

25

A
n
gu

la
r
ve
lo
ci
ty

in
(r
ad

/s
ec
)

p

q

r

0 5 10 15

Time in (s)

-1

-0.5

0

0.5

1

C
om

p
on

en
ts

of
ve
ct
or

n

nx

ny

nz

Fig. 3.6. Simulation results for stabilizing a quadcopter after one rotor
failure. The position of the vehicle is controlled as well.

According to this new definition of hover, the vehicle must maintain an altitude

while rotating with angular velocity ωωωB about the axis nnn that is fixed with respect to

the vehicle and is expressed in the body frame. From (3.17) and (3.18) we have:
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Fig. 3.7. Variations of thrust force for all propellers of the quadcopter
after one rotor failure.

ṅnn = −ωωωB × nnn (3.38)

ṅnn = 0→ ‖n̄nn‖ = ε‖ω̄ωωB‖ → ε =
1

‖ω̄ωωB‖
(3.39)

where an overbar indicates the equilibrium (hover) condition.

Similar to the quadcopter with one rotor failure, this unit vector n̄nn must be parallel

to the gravitational acceleration vector ggg in order to maintain altitude. Therefore,

the projection of average total thrust force, when the vehicle is spinning, onto the

unit vector n̄nn should be equal to the weight of the vehicle. In other words, the unit
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vector nnn shows the direction of the average total acceleration of the vehicle. This can

be written mathematically as follows:

(
f̄ffB +

4∑
i=1

fffpi

)
.n̄nn = m‖ggg‖ (3.40)

Using equations (2.18), (3.38)- (3.40) and by setting angular accelerations to zero,

a system of seven algebraic equations for eight unknowns are obtained. One more

equation is required to solve the system and to find the hover solution. The unknowns

are: p̄, q̄, r̄, n̄x, n̄y, n̄z, and ‖ω̄ωωp1‖, ‖ω̄ωωp2‖. Assuming ‖ω̄ωωp1‖ = ‖ω̄ωωp2‖ = ‖ω̄ωωp‖, in both

monospinner and bispinner configurations, we add an additional constraint to the

system. Therefore, eight algebraic equations can now be solved for eight unknowns

to find the hover solution.

After finding the hover solution and using the proposed propeller model in presence

of freestream velocity, total mechanical power in the system can be calculated as the

sum of mechanical power of the propellers plus mechanical power of the streamline-

shape fuselage as follows:

P̄ = P̄B +
3∑
i=1

P̄pi = ‖τ̄ττ dB‖|r̄|+
4∑
i=1

(
‖τ̄ττ dpi‖‖ω̄ωωpi‖

)
(3.41)

Using (3.41), we will later define an objective function to determine optimal config-

urations for this spinning UAV.

The control structure is very similar to that of quadcopter with a rotor failure.

First, from the nonlinear equations of motion a linear time-invariant system around
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the hover solution is derived to describe the reduced attitude of the vehicle. Then,

a linear time-invariant control strategy is developed to control the reduced attitude.

By controlling the reduced attitude and altitude, it is shown that the direction of the

unit vector nnn can be controlled. In the end, it is shown that by controlling x- and

y-components of nnn (that are related to translation motion) and total acceleration of

the vehicle, position control can be achieved as well.

The strategy is to give up control of full attitude degrees of freedom and instead,

only the two attitude degrees of freedom related to translational motion will be con-

trolled. Therefore, a new state variable, including pitch and roll rates of the vehicle

and x- and y- components of the unit vector nnn, as ζζζ = (p, q, nx, ny) is defined to

represent the reduced attitude of the vehicle. Furthermore, the deviations of ζζζ from

its equilibrium state ζ̄ζζ = (p̄, q̄, n̄x, n̄y) is written as ζ̃ζζ = ζζζ − ζ̄ζζ and its evolution as a

first order system is as follows:

˙̃
ζζζ = Aζ̃ζζ + Buuu, A =

∂
˙̃
ζζζ

∂ζ̃ζζ

∣∣∣∣
ζ̃ζζ=ζ̄ζζ

=



0 a 0 0

−a 0 0 0

0 −n̄z 0 r̄

n̄z 0 −r̄ 0


, B =



b1

b2

0

0


(3.42)
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where a, b1 and b2 are as follows:

a = IBxx−IBzz
IBxx

r̄ − 2Ipzz‖ω̄ωωp‖ cos δ

IBxx

b1 = l cos δ
IBxx
− 3CDpRp sin δ

4IBxxCLp

b2 = h sin δ
IBxx

(3.43)

Although A and B matrices in (3.42) remain the same for both configurations, the

control input for each configuration would be different. In monospinner configuration,

the control input in (3.42) can be written as follows:

umonospinner = (fp1 − f̄p1) + (fp2 − f̄p2) (3.44)

whereas in bispinner configuration, the control input is written as:

ubispinner = (fp1 − f̄p1)− (fp2 − f̄p2) (3.45)

Using (3.42)- (3.45), x- and y- components of the unit vector nnn can be controlled.

Intuitively, although only two moments about x- and z-axis (roll and yaw) could be

manipulated directly, the moment about y-axis (pitch) could be manipulated indi-

rectly using the cross-coupling of angular momentum in the system which enables us

to control pitch and roll rates and thus the reduced attitude of the vehicle. Further-
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more, an additional degree of freedom to balance the weight of the vehicle can be

resolved by the following constraint:

fp1 + fp2 + fB = f̄p1 + f̄p2 + f̄B (3.46)

Similar to the quadcopter with one rotor failure, since nnn represents the direction

of average total acceleration of the vehicle, one can control the position of vehicle by

controlling the magnitude of total acceleration and the direction of nnn. We can control

the direction of nnn using the reduced attitude controller derived in (3.42)- (3.45). If

we define the deviations of position of the vehicle ddd from its desired position dddd as d̃dd,

expressed in the inertial frame, to behave like a second order system with damping

ratio ξ and natural frequency ωn, then the acceleration vector can be found as follows:

d̈dd = −2ξωn
˙̃
ddd− ω2

nd̃dd (3.47)

Also, we always have to compensate for gravitational acceleration ggg which adds

another term to (3.47). Therefore, the total desired acceleration for position control

is written as:

d̈ddd = d̈dd− ggg (3.48)

Finally, similar to (3.34), the desired direction of the unit vector nnn can be found

as follows: ((
f̄ffB +

4∑
i=1

fffpi

)
.n̄nn

)
nnnd = mIRT

B

(
d̈ddd − ggg

)
(3.49)
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nnnd =
mIRT

B

(
d̈ddd − ggg

)
(
f̄ffB +

∑4
i=1 fffpi

)
.n̄nn

(3.50)

Note that in the nested loop control structure, the position control should be

done at slower rate than the reduced attitude control because of the faster dynamics

in rotation than that in the translation. Therefore, damping ratio ξ and natural

frequency ωn in (3.47), should be selected carefully.

3.3.1 Monospinners Simulation Results

Suppose we have a spinning UAV with monospinner configuration with the fol-

lowing physical parameters:

cp = 0.03 m, cB = 0.03 m, Rp = 0.08 m, RB = 0.08 m,

δ = 0.0 rad, m = 0.1728 kg, l = 0.08 m, h = 0,

CDp = 0.1, CDB = 0.1, CLp = 1.5, CLB = 1.5,

Ipzz = 1.5360× 10−5 kg.m2, IB = diag([8.96× 10−5, 8.96× 10−5, 1.022× 10−4]) kg.m2

Using equations (2.18), (3.38)- (3.40) and by setting angular accelerations to zero,

hover solution can be found as follows:
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n̄nn = (0, 0.02, 0.999)T , ω̄ωωB = (0, 7.02,−300.19)T rad/s

‖ω̄ωωp1‖ = ‖ω̄ωωp2‖ = 512.46 rad/s

f̄p1 = f̄p2 = 0.424 N, f̄B = 0.848 N

(3.51)

Using the calculated hover solution a linear-quadratic regulator (LQR) is designed

to stabilize the vehicle. For the LQR controller, diagonal cost matrices R and Q are

chosen with cost values 0 on the angular rates and 10 on deviations from the x-

and y-components of nnn. In the translational controller, damping ratio ξ and natural

frequency ωn are chosen to be 0.7 and 1 respectively for all translational degrees of

freedom. Eventually, A and B matrices are calculated as follows:

A =



0 −75.4292 0 0

75.4292 0 0 0

0 0.999 0 −300.19

−0.999 0 300.19


, B =



625

0

0

0


(3.52)

Consequently, the LQR control gain can be calculated as follows:

klqr =

[
0.0397 0.0017 −4.4571,−0.3664

]
(3.53)

Using (3.42), (3.52) and (3.53), the controller is implemented using the nonlin-

ear equations of motion to stabilize the vehicle. Simulation results are presented in

Fig. 3.8. In the simulations, it is assumed the vehicle starts at its initial position
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ddd0 = (0, 0, 3) m. Note that the monospinner configuration is highly sensitive to the

geometry of the vehicle, simply because it is highly under-actuated. Therefore, we as-

sume the vehicle starts from a condition very close to the hover solution and then we

introduce a step change in the position reference of the vehicle. The desired position

is set to be at dddd = (3, 2, 5) m. Simulation results for position control are presented

in Fig. 3.8-Fig. 3.10.
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Fig. 3.8. Simulation results for stabilizing a monospinner. Results for
position control from an initial position ddd0 to the desired position dddd
are presented.

3.3.2 Bispinners

Now suppose we have a spinning UAV with bispinner configuration with the fol-

lowing physical parameters:

cp = 0.03m, cB = 0.03 m, Rp = 0.08 m, RB = 0.4 m,
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Fig. 3.9. Simulation results for stabilizing a monospinner. Variations
of thrust force of the propeller is shown.
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Fig. 3.10. Simulation results for stabilizing a monospinner. Variations
of thrust force of the streamline-shape fuselage is shown.

δ = 0.1 rad, m = 0.264 kg, l = 0.4 m, h = 0,

CDp = 0.1, CDB = 0.1, CLp = 1.5, CLB = 1.5,
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Ipzz = 7.68× 10−5 m, IB = diag([9.6× 10−3, 9.6× 10−3, 1.92× 10−2]) kg.m2,

Using equations (2.18), (3.38)- (3.40) and by setting angular accelerations to zero,

hover solution can be found as follows:

n̄nn = (0, 0, 1)T , ω̄ωωB = (0, 0,−37.65)T rad/s

‖ω̄ωωp1‖ = ‖ω̄ωωp2‖ = −184.54 rad/s

f̄p1 = f̄p2 = 0.46 N, f̄B = 1.67 N

(3.54)

Using the calculated hover solution a linear-quadratic regulator (LQR) is designed

to stabilize the vehicle. For the LQR controller, diagonal cost matrices R and Q

are chosen with all the diagonal elements being 1. In the translational controller,

damping ratio ξ and natural frequency ωn are chosen to be 0.7 and 1 respectively for

all translational degrees of freedom. Eventually, A and B matrices are calculated as

follows:

A =



0 29 0 0

−29 0 0 0

0 1 0 −37.65

−1 0 37.65


, B =



29.55

0

0

0


(3.55)

Consequently, the LQR control gain can be calculated as follows:

klqr =

[
1.3587 −0.3838 −0.2122 −1.3982

]
(3.56)
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Using (3.42), (3.52) and (3.53), the controller is implemented using the nonlin-

ear equations of motion to stabilize the vehicle. Simulation results are presented in

Fig. 3.8. In the simulations, it is assumed the vehicle starts hovering at its initial

position ddd0 = (0, 0, 10) m. Note that for bispinner, because we have full control over

pitch/roll moments, it is easier to stabilize the vehicle and is less sensitive to geom-

etry of the vehicle (compared to monospinner). The desired position is set to be at

dddd = (5, 0, 12) m. Simulation results for position control are presented in Fig. 3.11 and

Fig. 3.12. From the figures, it can be seen that the control performance is relatively

better in bispinner than that in monospinner. It is simply because in bispinner con-

figuration, at least one rotational degree of freedom (roll or pitch) can be controlled

independently.
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Fig. 3.11. Simulation results for stabilizing a bispinner. Results for
position control from an initial position ddd0 to the desired position dddd
are presented.
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Fig. 3.12. Simulation results for stabilizing a bispinner. Variations of
thrust forces generated by the propellers and the fuselage. Note that
fp1 and fp2 are very close and fall on top of each other in this graph.
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4

Performance Optimization

This chapter presents performance optimization for mutli-rotor UAVs. We start with

investigating the effects of dihedral and twist angles on stability and maneuverabil-

ity in quadcopters. These angles are introduced in Section 2.2. The results of this

investigation will help to analytically identify quadcopter configurations with highest

stability or maneuverability for the first time. Also, it could help to design reconfig-

urable vehicles which change shape, depending on flight conditions, to achieve some

objectives according to mission requirements. In addition, by adding twist angle to

quadcopters, a specific configuration could be found which not only yields to the

minimum-power hovering in case of a rotor failure but also increases the stability of

the vehicle in absence of an actuator failure.

We continue by investigating the performance of spinning-type UAVs. In particu-

lar, we define an optimization problem to find the optimal configurations in monospin-
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ners and bispinners which results in not only having the minimum power consumption

in hover, but also having the best trajectory tracking performance. In finding these

configurations, we take into account the effects of nonzero freestream, the proposed

propeller model and the complete nonlinear models presented in Chapter 2. Finally,

optimal configurations for each type of UAVs is presented and design guidelines are

provided.

4.1 Optimal Design in Quadcopters

The focus of this section is on quadcopters. We start with introducing the dihedral

and twist angles to the vehicle and presenting their effects on stability of the vehicle

analytically. We present six different configurations ranking from the most stable to

the most maneuverable. Later, we show that one of these configurations yields the

optimal-power hover solution in quadcopters in case of a rotor failure. The results

are validated using numerical analysis.

4.1.1 Optimal design for stability

In this section, an aerodynamic phenomenon, called dihedral effect, which is very

common in fixed-wing aircrafts is introduced [37]. Suppose we have a quadcopter as

shown in Fig 4.1 and each rotor can be tilted independently about x- and y-axis of

its corresponding frame Mi. From Section 2.2, the tilting angle about x-axis is called
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twist angle αi and the tilting angle about the y-axis is called dihedral angle βi. The

positive direction of rotation can also be found in Section 2.2.

h

Fig. 4.1. Quadcopter in “+” configuration. Body frame is shown
in blue and is attached to the center-of-mass of the quadcopter. A
frame, shown in blue, is attached to each motor in order to determine
orientation of the motors with respect to body frame. Motors are
located at distance l and h from z-axis and x-y plane of the body
frame respectively.

Furthermore, in Section 2.1, by introducing the effects of having nonzero freestream

velocity on propeller’s performance, we concluded that “any freestream with positive

(negative) z-component velocity, as expressed in the propeller’s frame Mi, increases

(decreases) the AOA which increases (decreases) the thrust force”.

Now consider a quadcopter in 2D motion. In Fig 4.2, a configuration with no twist

angle (αi = 0) and constant dihedral angle βi = b (b is negative) is shown. Suppose

the vehicle is pitching down and moving to the left which is equivalent of having an
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air flow with horizontal velocity to the right as shown in blue color in the figure. Ac-

cording to “Dihedral Effect”, for the left motor, there will be an airflow with positive

z-component in the corresponding frame Mi as shown in green color, and similarly,

for the right motor, there will be an airflow with negative z-component velocity in

the corresponding frame Mi. As a result, the AOA in the left rotor increases thus

its thrust force increases. However for the right rotor, the AOA decreases and thrust

force decreases as well. This interesting effect can make the vehicle stable in transla-

tional motion. As the vehicle moves to the left, due to the difference between thrust

force of the left and right motors, a moment q′, is generated that acts like damping

in the system which resists with pitching and attempts to bring pitch angle to zero.

‘

Horizon

Fig. 4.2. Dihedral effect in 2D motion of a quadcopter. The quad-
copter is pitching down and moving to the left. Dihedral effect gen-
erates the moment q′ and acts like damping in the system.
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From (2.10), one can derive an equation to determine the changes in thrust force

of the propellers as follows:

‖Mi∆fffpi‖ =
1

4
ρacσR

2
b‖VVV ∞‖|γ̇i| (4.1)

where γ̇i is the angular velocity of the ith propeller about z-axis of frame Mi and VVV ∞

is the freestream velocity vector which is in the direction of z-axis of the frame Mi.

Near hover condition, if we consider γ̇i to be constant then (4.1) can be simplified

further as follows:

‖Mi∆fffpi‖ = −ζ‖VVV ∞‖, ζ =
1

4
ρacσR

2
b |γ̇i| (4.2)

We call equation (4.2) the “Pitch Damper” and likewise, one can derive an equation

for “Roll Damper”. The reason we call this a damper is because any pitching moment

generates a freestream over the propellers which changes their thrust force accord-

ing to (4.2), and this change in thrust force generates a moment counteracting that

original pitching moment.

Effects of twist angle αi also falls in the category of “Dihedral Effects”. As shown

in Fig 4.3, to damp yaw motion, we need to choose α1,3 > 0 and α2,4 < 0. This

is an interesting case where dihedral effect damps yaw motion. To better visualize

this effect, assume that the quadcopter has a positive rotation about axis zB. In this

case, due to dihedral effect, AOA of propellers 2 and 4 decreases since there is an

airflow with negative z-component of its linear velocity in the corresponding frames
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M2,4. On the other hand, there will be an air flow with positive z-component of

its linear velocity in the corresponding frames M1,3. This phenomenon, generates a

yaw moment (shown in green) that resists yaw motion r. Note that using α1,3 < 0

and α2,4 > 0 will have an adverse effect on yaw motion and could make the vehicle

unstable.

Fig. 4.3. Quadcopter having only twist angles α1,3 > 0 and α2,4 < 0.
The vehicle is going through pure yaw motion r and dihedral effect
generates a counteracting yaw motion.

In summary, these changes in thrust force of the propellers generate counteracting

moments in all rotational degrees of freedom. These moments could affect overall

stability of the vehicle. We continue by presenting stability analysis in yaw motion

(roll and pitch will be similar).
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For simplicity suppose βi = 0, α1,3 > 0 and α2,4 < 0. Also, all of these angles

are assumed to remain constant throughout the analysis. We assume, d is positive

meaning that the center of mass is located below the flat plane in Fig 4.1. Using (2.14)

and (2.16), the equations governing the rotational motion can be rewritten as follows:

τττ =


Ixxṗ

Iyy q̇

Izz ṙ

+


(Izz − Iyy)qr

(Ixx − Izz)pr

0

 (4.3)

where

τττ =


kfhsα(γ̇1

2 − γ̇3
2) + (kf lcα + ktkfsα)(γ̇2

2 − γ̇4
2)

kf lcα(γ̇4
2 − γ̇2

2) + (ktkfsα + kfhsα)(γ̇3
2 − γ̇1

2)

(ktkfcα − kf lsα)(γ̇1
2 − γ̇2

2 + γ̇3
2 − γ̇4

2)

 (4.4)

Note that τ is the external torque generated by the rotors to control the attitude

of the vehicle and γ̇i is the angular velocity of the rotors. Also, s and c represent

sine and cosine functions. It can be shown that αi = 0 yields equations of motion

for a regular quadcopter without tilting angles. From (4.3) and (4.4), in a pure yaw

motion, we have the following equation:

τyaw = Izz ṙ (4.5)
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From (4.4) and assuming the motors input for yaw motion to be equal to u = γ̇1
2 −

γ̇2
2 + γ̇3

2 − γ̇4
2, we can rewrite (4.5) as follows:

ṙ =
(ktkfcα − kfLsα)

Izz
u (4.6)

Taking Laplace transform of (4.6), we can derive yaw motion transfer function as

follows:

r(s)

u(s)
=
C1

s
(4.7)

where C1 =
(ktkf cα−kfLsα)

Izz
.

Using (4.2), we can add the effects of twist angle into (4.6). Let’s suppose the

vehicle is going through pure yaw motion, r, as shown in Fig 4.2. This yaw motion

will generate an almost uniform local airflow over each blade with linear velocity

expressed in the body frame as follows:

Bvpi = [0, 0, r]T × BOMi
= [0, 0, (−1)i+1rlsαi ]

T (4.8)

where BOMi
is the position vector of COM of the ith propeller expressed in the body

frame and l is the distance of the COM of the propeller to the COM of the vehicle.

Using (4.2) and (4.8), we can write down the equation for changes in thrust force of

each propeller expressed in the body frame as follows:

B∆Fpi,twist = [0, 0, (−1)i+1ζyawrlsαi ]
T (4.9)
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From (4.9) and considering all the changes in thrust force for all propellers, we

can calculate the net moments due to twist angle αi as follows:

τττ twist =
4∑
i=0

BOMi
× B∆Fpi,twist (4.10)

As shown in Fig 4.2, any yaw motion r, will generate an airflow with negative

z-component of its linear velocity in the frames M2,4. Likewise, it will generate an

airflow with positive z-component of its linear velocity in the frames M1,3. As a

result, based on (4.10), a torque will be generated counteracting the yaw motion r.

Considering the simplifying assumptions made earlier in this section, (4.10) can be

rewritten as follows:

τττ twist = [0, 0,−4ζyawrl
2s2
αi

]T (4.11)

Now, using (4.5) and the third component of (4.11), we can add the effects of

twist angle as follows:

τyaw + τtwist = Izz ṙ (4.12)

C1u = ṙ +
ζ ′yaw
Izz

r (4.13)

where ζ ′yaw = 4ζyawL
2s2
a > 0. Finally, taking Laplace transform of (4.13) and simpli-

fying will result in the following transfer function:

r(s)

u(s)
=

C1

s+
ζ′yaw
Izz

(4.14)
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Comparing (4.14) with (4.7), shows that the vehicle has become more stable in-

deed. Transfer function in (4.14) shows that it only has one negative pole indicating

asymptotic stability in yaw motion. In addition to stability, this configuration helps

to yaw faster because of the twist angle. Using twist angle, a component of thrust

force can be used to generate yaw motion which can be larger and easier to generate

compared to regular quadcopters which yaw using reaction moments of the rotors.

Note that α1,3 < 0 and α2,4 > 0 will have adverse effect on stability and will destabilize

the system or in other words, increases maneuverability.

Similarly, it can be shown that such phenomenon exists in roll and pitch motion

for negative values of dihedral angle βi and similar transfer functions can be derived.

The effect of location of center of mass is hidden in the value of ζ ′ in roll and pitch

motion. It can be shown that for d > 0 , as d increases, the location of the pole of

the transfer function will move to the left in the complex plane and increases stability

and decreases maneuverability. Similarly, as d decreases (even for negative values),

the location of the pole of the transfer function will move to the right in the complex

plane and stability will be decreased and maneuverability will be increased.

As a corollary, based on dihedral and twist angles, six different configurations

are proposed followed by a comparison in terms of stability and maneuverability. A

regular quadcopter with all rotors’ angles set to zero is considered as a reference for

comparison. The sign of dihedral and twist angles for each rotor determines degree

of stability or maneuverability in each configuration. The following list, ranks these
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configurations from the most stable to the most maneuverable (for simplicity, we

assume that d is positive for all configurations):

1. βi < 0, α1,3 > 0 and α2,4 < 0

2. βi < 0, αi = 0

3. βi = 0, α1,3 > 0 and α2,4 < 0

4. βi = 0, αi = 0 (flat configuration)

5. βi = 0, α1,3 < 0 and α2,4 > 0

6. βi > 0, α1,3 < 0 and α2,4 > 0

In configuration (1), dihedral and twist angles are in favor of the stability and

three dampers for roll, pitch and yaw motion are active in the quadcopter and are

helping to stabilize its rotational motion. In configuration (2), twist angles are all

set to zero, meaning that no damping (due to twist angles) exist in yaw motion and

only roll and pitch dampers are active which results in having a vehicle less stable

compared to configuration (1). In Configuration (3), only yaw damper is active and

in configuration (4) all dihedral and twist angles are set to zero representing a regular

quadcopter without tilting angles of the motors. In configuration (5), twist angles

have an adverse effect compared to what we had in configuration (1), meaning that

twist angles in this configuration will destabilize yaw motion of the quadcopter.

Note that having an adverse effect on stability means that the poles of the transfer

function will move rightward in the complex plane and in some cases the poles will
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possibly fall in the right half of complex plane. Finally, in configuration (6), all dihe-

dral and twist angles are having adverse effect with regard to stability in the system.

However, in configurations (5) and (6), the vehicle has the highest maneuverability

compared to other configurations.

In summary, depending on applications and the environment in which the quad-

copter is operating, choosing the best configuration and optimized values for dihedral

and twist angles will be a trade off between stability and maneuverability.

4.1.2 Optimal design for fault tolerant control

In this section, we investigate about the optimality of the configuration and hover

solution, in a quadcopter after a rotor failure, in terms of power consumption. After

failure, it is shown that at equilibrium, the vehicle will have constant angular velocity

with yaw being the dominant rotational motion. In hover, according to (3.23)- (3.25),

r̄ can have significant effects on thrust force and the moment generated by the pro-

pellers depending on its magnitude and direction which consequently affects power

consumption of the motors. In particular, a specific configuration can be introduced

that generates r̄ such that it is in favor of thrust force and the moment of the propeller

and thus yielding the minimum-power hover solution.

In hover, r̄ can affect the resultant angular velocity of the propeller and also can

change the relative air flow velocity over the blade. In a quadcopter, because half of

the rotors are turning in the opposite direction of the remaining half of the rotors,

therefore after failure, r̄ will have positive effect on some rotors and negative effect on
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some other rotors. If the direction of r̄ is the same (opposite) as that of the propeller’s

angular velocity, then the propeller should turn slower (faster) in order to generate

the same amount of thrust force when r̄ = 0, therefore according to (3.24), (3.23)

and (3.28), since f̄pi experiences very small changes (only for small angles), the power

consumption of the motor will be decreased (increased). The goal of this section is

to find the best configuration of the motors to get the most benefits out of r̄ after

failure, such that the power consumption of the motors is minimum.

In regular quadcopters, yaw motion is usually carried out using reaction moments

of the propellers. This moment is fairly small compared to the moment generated by

the propeller’s thrust force about the center of mass of the vehicle [6], therefore it

may not be an efficient way to yaw. Instead, one can yaw by tilting the rotors (the

twist angle αi presented in Section 2.2 in Fig 2.7) and using a small component of

the propeller’s thrust force to generate relatively larger yaw moments [12]. Note that

the tilting angle should be small enough so that the component of the thrust force

that balances the weight of the vehicle experiences small changes. Also, it has to be

small enough such that the linear time-invariant fault-tolerant controller can stabilize

the vehicle after the failure of one rotor. Therefore, using numerical simulations in

Section 3.2 and to ensure stability after the failure, we assume −0.4 ≤ αi ≤ 0.4 rad.

A new configuration is proposed by tilting the rotors about the x-axis of each

motor frame Mi as shown in Fig 4.4 where the positive direction of the tilting angle

is shown in Fig 4.5. Because rotors 1 and 3 are assumed to be turning in the negative

direction of z-axis of the body frame, by tilting these rotors by any positive angle,

75



the vehicle tends to generate a yaw motion that is in favor of reducing their power

consumption. Whereas for rotors 2 and 4 which are turning in the positive direction

of the z-axis of the body frame, the tilting angle should be negative. Note that

it is assumedα1 = α3 and α2 = α4. The resulting configuration is presented in

Fig 4.6. This new configuration not only helps to reduce the power consumption after

failure, but also helps to increase stability of the vehicle in yaw motion in absence of

failures [12]. It also adds a new tuning parameter αi to the hover solution.

h

Fig. 4.4. A Quadcopter in “+” configuration. Motor frames and body
frame are presented in blue and red respectively. Direction of rotation
of propellers are presented as well.

Using equations (2.14) and (3.17)- (3.25), adding the effect of tilting angle, setting

angular accelerations to zero, adding the constraints in (3.26), assuming that motor

number 4 is failed (‖ω̄ωωp4‖ = 0) and considering the proposed propeller model, a system
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Fig. 4.5. Twist angle α1 about the x-axis of the motor frame M1.

Fig. 4.6. The proposed configuration for quadcopter by introducing
twist angle to the rotors.

of 11 algebraic equations for 11 unknowns are obtained. The system of algebraic

equations can be solved numerically to obtain the hover solution. In this system of

equations, there are two tuning parameters namely ρ and |αi|.

In order to find the minimum-power hover solution, a simple line search is per-

formed over tuning parameters ρ and αi. Results show that the minimum-power

hover solution can be found when ρ = 0 and α1,3 = 0.4 radians, meaning that after

failure, motor number 2 should be turned off and rotors number 1 and 3 should be
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tilted by 0.4 radians. For ρ = 0, Fig 4.7 shows the equilibrium value of total power

consumption of the motors for all values of tilting angle −0.4 ≤ αi ≤ 0.4, Fig 4.8

shows the absolute value of yaw rate r̄ at equilibrium for all values of αi and Fig 4.9

shows the equilibrium value of angular velocity of the propellers with respect to the

body frame for all values of αi (note that ω̄ωωp1 = ω̄ωωp3).
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Fig. 4.7. Equilibrium value of total power consumption of the motors
for all values of twist angle. Note that ρ = 0

From Fig 4.7, it can be seen that the minimum-power hover solution can be found

when α1,3 = 0.4 rad. Note that when tilting angle is zero and ρ = 0, P̄ is almost 54

W which is larger than P̄ in (3.29), meaning that having three motors on, actually

consumes less power than having only two motors on (when αi = 0). However, after

adding the effects of tilting the motors, it is shown that with only two motors one

can find a hover solution with even less power consumption than with three motors.
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Fig. 4.8. The absolute value of yaw rate r at equilibrium for all values
of twist angle. Note that ρ = 0
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Fig. 4.9. The absolute value of angular velocity of the propellers at
equilibrium with respect to the body frame for all values of twist
angle. Note that ρ = 0

In Fig 4.8, despite having large yaw rates (absolute value) when αi is negative, the

power consumption is high, simply because the yaw motion is in the opposite direction
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of the angular velocity of the propellers and it decreases the resultant airflow velocity

over the blades. Therefore, the propellers must turn faster to balance the weight of

the vehicle and as a result, the power consumption increases. As αi approaches 0.08

radians, the absolute value of yaw rate approaches zero at equilibrium. Not that when

r̄ = 0, according to (3.30), the system becomes uncontrollable. Furthermore, as αi is

greater than 0.08 and increasing, the absolute value of yaw rate starts increasing in

favor of decreasing the power consumption of the motors.

Finally, in Fig 4.9, as αi increases from -0.4 radians up to -0.26 radians, the

absolute value of angular velocity of the propeller with respect to the body frame

increases which is due to the interaction between the freestream velocity and the

local airflow velocity over the blades. For all values of αi ≥ −0.26, angular velocity

of the propeller decreases up to its minimum value occurring at αi = 0.4 radians.

The minimum-power hover solution considering both tuning parameters ρ and

α1,3 = 0.4 can be found as follows:

ρ = 0.0, α1,3 = 0.4 rad, n̄nn = (0, 0, 1)T ,

ω̄ωωB = (0, 0,−95.47)T rad/s

‖ω̄ωωp1‖ = ‖ω̄ωωp3‖ = 499.2 rad/s, ‖ω̄ωωp2‖ = ‖ω̄ωωp4‖ = 0 rad/s,

τ̄p1 = −τ̄p3 = (0,−0.04, 0)T N.m, τ̄p2 = τ̄p4 = 0

f̄p1 = f̄p3 = 2.06 N, f̄p2 = f̄p4 = 0

P̄hover =
∑4

i=1 P̄pi = 44.9 W

(4.15)
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It is worth mentioning that controller performance in trajectory tracking can be

added as an additional constraint to the system to find the optimal-power hover

solution which not only yields a configuration with minimum power consumption in

hover, but also has the best tracking performance. However, it can be shown through

simulations that the performance of a nominal controller for the quadcopter with

one or two rotor failures does not change much. Therefore, controller performance is

assumed to be almost invariant to different configurations.

4.2 Optimal Design in Spinning UAVs

This section presents optimal hover solutions for the two configurations in spinning

UAVs namely Monospinners and Bispinners. These solutions are not only optimal in

terms of power consumption, but also are optimal in tracking a trajectory. We begin

with defining a set of design variables and an objective function to minimize power

consumption in hover while having the best performance in tracking a trajectory.

In the end, extensive numerical analyses are carried out and design guidelines are

provided.

We define a set of seven design variables as follows:

x =
(
θp, θB,

cB
cp
,
RB

Rp

,
l

RB

,
h

RB

, δ
)

(4.16)

where θp and θB are pitch angles (in degrees) of the blades of propeller and fuselage

respectively, cB
cp

is the ratio of fuselage’s chord to propeller’s chord, RB
Rp

is the ratio
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of fuselage’s blade radius to propeller’s blade radius, l
RB

is the ratio of the distance

of COM of the propeller from COM of the vehicle to the fuselages blade radius, h
RB

is the height of the COM of the propellers in the body from to the fuselage’s blade

radius and δ is the tilting angle of the rotors in radian. Note that any configuration

can be described using (4.16).

In order to compare different configurations in terms of power consumption in

hover, specific power (power-to-weight ratio) is defined as a function of (4.16) as

follows:

Ps =
P̄

m‖ggg‖
= F (x) (4.17)

Note that equations of motion are highly nonlinear and the system of equations

used to find hover solution does not have an explicit solution. Therefore, they should

be solved numerically and for that we choose the following physical parameters of the

system:

cp = 0.03 m, Rp = 0.08 m, ‖ggg‖ = 9.81 m/s2, ρa = 1.225kg/m3 (4.18)

Also note, for each configuration, as cB
cp

and RB
Rp

change, the total mass and moment

of inertia matrix of the vehicle will change accordingly.

Since the system is highly under-actuated, it is important to investigate about the

performance of the controller in tracking a trajectory. Therefore, to check tracking
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performance, first, using (3.30) a nominal LQR controller with the following weight

matrices is defined:

Q = diag([1, 1, 10, 10]), R = 1 (4.19)

where Q is the weight matrix for the states and R is the weight matrix for the

control input. In (4.19), higher weights are given to the x and y components of nnnd.

Furthermore, natural frequency and damping ratio of the position controller in (3.33)

are set to 1. Using this nominal controller an objective as a function of percentage

overshoot and steady state error, for all translational degrees of freedom, in response

to a step change is defined as follows:

y = (POx, POy, POz, SSx, SSy, SSz)

G(y) = a1PO
2
x + a2PO

2
y + a3PO

2
z + a4SS

2
x + a5SS

2
y + a6SS

2
z

(4.20)

where PO and SS represent percentage overshoot and steady state error respectively

and ai is a real number representing the weight given to each element of y in the cost

function G(y).

Finally, the optimal configuration with minimum power consumption in hover

having the best trajectory tracking performance can be found by defining a cost

function by combining (28) and (33) as follows:

H(x, y) = b1F (x) + b2G(x) (4.21)
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where b1 and b2 are the weights given to power consumption of the vehicle and its

trajectory tracking performance respectively.

Using (4.16) and (4.17), an optimization problem is defined to find the optimal

configuration as follows:

argmin
x

H(x)

subject to equations of motion

(4.22)

4.2.1 Monospinners

In this section, optimal solutions for hovering and trajectory tracking of monospin-

ners are presented. We begin with configurations where the tilting angle is zero and

in the end we discuss the results when taking the tilting angle into account. First

using (4.16)- (4.21) and using simple blind search algorithm, we investigate about

finding the best x which results in the minimum Ps.

Fig 4.10, shows the contours of Ps for variations of θp and θB. The results suggest

that the optimal-power configuration can be achieved when having the maximum

allowed pitch angle for both propeller and fuselage.

Next, by selecting the best values for θp and θB, we present the power consumption

of hover solutions for variations of cB/cp and RB/Rp . Using (4.17), contours of Ps

versus variations of cB/cp and RB/Rp can be drawn as shown in Fig 4.11.

Fig 4.11 shows that the optimal configuration can be achieved at the maximum

allowed cB/cp and RB/Rp = 0.7. This indicates that as RB/Rp increases, Ps increases

84



Fig. 4.10. Contours of Ps versus variations of θp and θB. In these
simulations, l/RB = 1, h/RB = 0.2, cB/cp = 1 and RB/Rp = 2

Fig. 4.11. Contours of Ps versus variations of cB/cp and RB/Rp. In
these simulations, l/RB = 1, h/RB = 0.2, θp = θB = 10 degrees.
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as well. It also means, for large values of RB/Rp , the vehicle has a more tendency

to roll than yawing and a significant portion of the propeller’s thrust force causes the

vehicle to go through a periodic motion in hover, which increases power consumption.

Fig 4.12, shows variations of Ps versus variations of RB/Rp when cB/cp = 2.
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Fig. 4.12. Variations of Ps versus variations of RB/Rp when cB/cp = 2.

In addition, the effects of l/RB ,h/RB are investigated along with all the other

design variables in x. The results show that the power consumption does not vary

much with the variations in h/RB , however, the effects of l/RB on power consump-

tion can be seen in Fig 4.13. The results indicate that the optimal solution occurs

at l/RB = 0, however, the configuration with l/RB = 0 and δ = 0 leads to an

uncontrollable configuration (controllability can be checked using (3.42)).

Since the optimal configuration with l/RB = 0 and δ = 0 is uncontrollable,

using the additional constraints for trajectory tracking, stated in (4.22), we should
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Fig. 4.13. Variations of Ps versus variations of l/RB.

search for the optimal configuration while minimizing the cost in (4.21). Therefore,

in addition to finding the optimal-power configuration in hover, we search for the

optimal configuration in terms of trajectory tracking performance. The results show

that the optimal solution occurs when l/RB = 0.65 and RB/Rp = 0.7. Note that

in (4.22), it is assumed ai = 1 for all i = 1, 2, , 6. The variations of the cost function

G(y) versus RB/Rp and l/RB are presented in Fig 4.14 and Fig 4.15 respectively.

Finally, using (4.21) and by choosing b1 = b2 = 1, the optimal configuration

with the minimum power consumption in hover, Ps = 1.4168 W/N, having the best

trajectory tracking performance is found as follows:

x =
(
θp = 10◦, θB = 10◦,

cB
cp

= 2,
RB

Rp

= 0.7,
l

RB

= 0.65,
h

RB

= 0, δ = 0
)

(4.23)
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Fig. 4.14. Variations of the cost function G(y) versus RB/Rp.
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Fig. 4.15. Variations of the cost function G(y) versus l/RB.

So far, in all the results, it was assumed that the tilting angle is zero. Adding the

tilting angle to the equations in monospinner configuration has two consequences:
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1. It makes the system of equations highly nonlinear and also in some cases the

hover solution does not exist.

2. Due to high nonlinearities and faster rotational motion, a linear time-invariant

control strategy may not be able to stabilize and control the reduced attitude

of the vehicle and nonlinear control strategies must be employed.

Therefore, finding a feasible hover solution and configuration that is controllable

using the proposed control strategy while considering the tilting angle in monospinner

may not be easy. However, Monte Carlo simulations of the nonlinear system in

different configurations with the proposed control strategy can be carried out to

investigate about the probability that the resulting vehicle is able to hover. Needless

to say, Monte Carlo simulations for such a system require extensive amount of work

and could be a topic for the future works.

In the following, we present the simulation results for the monospinner with the

optimal configuration found in (4.23). We assume the total mass of the vehicle is

m = 0.192 kg where a large portion of it is for battery and electronics which is

assumed to be me = 0.120 kg and the rest of it counts towards propellers and fuselage.

Also, with the assumptions given in Section 2, the moment of inertia matrix of the

propeller and the fuselage are Ip = diag(7.68× 10−6, 7.68× 10−6, 1.53× 10−5) kg.m2
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and IB = diag(4.89× 10−5, 4.89× 10−5, 1.05× 10−4) kg.m2 respectively. Using (3.38)-

(3.41), the optimal hover solution can be found as follows:

n̄nn = (0,−0.01, 0.999)T , ω̄ωωB = (0,−3.77,−414)T rad/s

ω̄ωωp = 617.37 rad/s, ‖τ̄ττ dp‖ = 0.0015 N.m, ‖τ̄ττ dB‖ = 0.0031 N.m

f̄p = 0.39 N, f̄B = 1.10 N, P̄s = 1.41 W/N

(4.24)

Using the hover solution, an LQR controller with the weights given in (4.19) is

designed to control the reduced attitude of the vehicle. Also, for position control,

the natural frequency and damping ratio are all set to 1. The resulting controller

is implemented and tested using the nonlinear equations of motion and the physical

parameters of the system. Simulation results starting from an initial position ddd0 =

(0, 0, 3)T m to the destination dddd = (3, 2, 5)T m (both expressed in the inertial frame)

are presented in Fig 4.16.

Note that in these simulations for monospinner, the vehicle starts with initial

angular velocity in hover equal to ω̄ωωB. Because the ω̄ωωB is very large (especially the

yaw component), the linear time-invariant controller is not able to bring the vehicle

from zero angular velocity at takeoff to its equilibrium state in hover, therefore the

initial angular velocity in the simulations is set to ω̄ωωB. This could be a serious problem

when implementing the controller on a real system. However, this constraint could

also be added to the cost function in (4.21) and also could be accounted for in Monte

Carlo simulations in the future works.
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In addition, since the monospinner is highly under-actuated, it can be seen in

the top left graph in Fig 4.16, how controlling one degree of freedom could disturb

other degrees of freedom. Also it can be seen that there is a steady state error

in controlling the z-component of the position (altitude) which may be resolved by

adding an integrator to the position controller.

Another important note in these simulations, is the frequency of the response

which can be seen in the middle and bottom left graphs of Fig 4.16. In implementing

the controller on a real system, it is important to verify that the motors are able to

respond to the fast periodic changes in the system.

4.2.2 Bispinners

In this section, optimal solutions for hovering and trajectory tracking of bispinners

are presented. Similar to monospinners, we begin with configurations where the

tilting angle is zero and continue by investigating the effects of adding tilting angle

to the rotors. With that in mind, using (4.16)- (4.21) and using simple blind search

algorithm, we investigate about finding the best x which results in the minimum Ps.

Like the monospinner, the results suggest that the optimal-power configuration

can be achieved when having the maximum allowed pitch angle for both propeller and

fuselage which is 10 degrees. Also, for δ = 0, Ps is independent of l/RB and h/RB ,

therefore, Ps would depend only on two design variables, namely cB/cp and RB/Rp

. Fig 4.17 shows the contours of Ps versus cB/cp and RB/Rp . It can be seen that

the minimum Ps falls in the dark blue area where cB/cp = 2, RB/Rp = 1.2 and Ps =
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0.8852 W/N. Also, Fig 4.18 shows variations of Ps versus RB/Rp where cB/cp = 2.

Therefore, the optimal configuration with the minimum power consumption in hover

is found as follows:

x =
(
θp = 10◦, θB = 10◦,

cB
cp

= 2,
RB

Rp

= 1.2,
l

RB

= 1,
h

RB

= 0, δ = 0
)

(4.25)

Fig. 4.17. Contours of Ps versus cB/cp and RB/Rp. Note that l/RB =
1, h/RB = 0 and δ = 0.

Unlike the monospinner, results show that the trajectory tracking performance in

bispinner configuration is not much sensitive to the configuration, although in some

cases which will be presented later in this section, high nonlinearities due to adding

the tilting angle of the rotors might make it difficult to control the vehicle with a
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Fig. 4.18. Variations of Ps versus RB/Rp where cB/cp = 2. Note that
l/RB = 1, h/RB = 0 and δ = 0.

linear time-invariant controller. Therefore, as long as tilting angle δ is zero, (4.25)

yields the optimal-power configuration in both hovering and trajectory tracking.

Now, we continue investigating about finding the optimal configuration for the

bispinner by considering nonzero tilting angle δ. In this case, the results still sug-

gest the maximum pitch angle for propeller and fuselage’s blades. Also, Ps remains

insensitive to variations of h/RB and as shown in Fig 4.17, it is inversely related to

cB/cp.

Fig 4.19 shows the contours of Ps versus variations of tilting δ and RB/Rp. It

shows that for small values of RB/Rp the optimal-power hover solution occurs when

δ = 0 while, as RB/Rp increases, the optimal-power hover solution occurs when δ is

nonzero and the contours are symmetric with respect to the zero tilting angle.
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Fig. 4.19. Contours of Ps versus variations of tilting angle δ and
RB/Rp. cB/cp = 2, l/RB = 1 and h/RB = 0.

Fig 4.20, shows variations of Ps versus variations of tilting angle δ and constant

values of RB/Rp which presents the results of Fig 4.19 clearly. In addition, it shows

that as RB/Rp increases, the minimum-power in each graph decreases which suggests

that larger RB/Rp leads to more optimal configuration.

Fig 4.21 shows three graphs, each presenting variations of the minimum Ps for all

values of tilting angle δ versus variations of l/RB for constant values of RB/Rp. For

example, in the yellow graph where cB/cp = 2, l/RB = 1, h/RB = 0 and RB/Rp =

5.1750, for each value of l/RB, the minimum Ps for all values of tilting angle δ is
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Fig. 4.20. Variations of Ps versus variations of tilting angle δ for
constant values of RB/Rp.

calculated. The results show that as RB/Rp increases, the minimum Ps occurs at

l/RB = 1 while for small values of RB/Rp, it occurs at l/RB < 1.

According to Fig 4.19 to Fig 4.21, the optimal configuration with the minimum

power consumption in hover occurs at a very large RB/Rp when l/RB = 1. However,

such a solution may not be controllable using the proposed linear time-invariant con-

troller. Therefore, to satisfy 4.22, we should constrain the tilting angle to small values

(−0.1 ≤ δ ≤ 0.1) such that the nominal controller introduced in the previous section

can stabilize the vehicle. Therefore, the optimal configuration with the minimum

power consumption in hover can be found as shown in Fig 4.22.
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Note that the trajectory tracking performance in the bispinner is almost insensitive

to the configuration as long as the linear time-invariant controller is able to stabilize

the vehicle. Finally, the optimal configuration with the minimum power consumption

in hover, Ps = 0.82 W/N, having the best trajectory tracking performance is the one

presented in Fig 4.22 and can be written as follows:

x =
(
θp = 10◦, θB = 10◦,

cB
cp

= 2,
RB

Rp

= 5,
l

RB

= 1,
h

RB

= 0, δ = 0.1
)

(4.26)

We continue with presenting simulation results for a bispinner with the optimal

configuration found in (37). In this vehicle, m = 0.384 kg, Ip = diag(7.68×10−6, 7.68×
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Fig. 4.22. Variations of Ps versus variations of RB/Rp. The tilting
angle is δ = 0.1, cB/cp = 2, l/RB = 1 and the pitch angle for both
propeller and fuselage is 10 degrees.

10−6, 1.53 × 10−5) kg.m2 and IB = diag(0.0048, 0.0048, 0.005) kg.m2. The optimal

hover solution can be found as follows:

n̄nn = (0, 0, 1)T , ω̄ωωB = (0, 0,−33.2)T rad/s

ω̄ωωp = 316.93 rad/s, ‖τ̄ττ dp‖ = 0.0024 N.m, ‖τ̄ττ dB‖ = 0.0520 N.m

f̄p = 0.59 N, f̄B = 2.59 N, P̄s = 0.82 W/N

(4.27)

Using the above hover solution, an LQR controller with the weights given in (4.19)

is designed to control the reduced attitude of the vehicle. Also, for position control,

the natural frequency and damping ratio are all set to 1. The resulting controller
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is implemented and tested using the nonlinear equations of motion and the physical

parameters of the system. Simulation results starting from an initial position ddd0 =

(0, 0, 4) m to the destination dddd = (5, 3, 6) m (expressed in the inertial frame) are

presented in Fig 4.23.

In the top left graph in Fig 4.23, it can be seen that not only the response of the

system is faster, but also it is smoother and almost no overshoot can be seen in the

graphs. This is because in bispinner, both roll and pitch moments are balanced, while

in monospinner, only roll moments are balanced. According to the top right graph in

Fig 4.16, although the vehicle starts with angular velocity zero in its initial position,

the linear time-invariant controller is able to bring the vehicle to its equilibrium state.

In the middle and bottom right graphs in Fig 4.23, in the beginning, the yaw rate is

zero and the streamline-shape fuselage generates no lift, therefore the propellers must

turn at their highest rate in hover to compensate for gravity. However, as the yaw rate

increases, the streamline-shape fuselage generates extra lift and therefore propellers

must turn slower and generate relatively lower lift to keep the vehicle hovering.

4.2.3 Discussion

This section, in essence, presents a discussion on the results of the performance

optimization for spinning UAVs and also a comparison between the two different

configurations. We start with the following remarks on the monospinner:
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• It is highly nonlinear and sensitive to geometry and moment of inertia matrix

of the fuselage. Therefore, hover solution for an arbitrary geometry may not be

feasible.

• For large values of RB/Rp and l/RB , the vehicle has more tendency to roll

than yaw in which case we may not be able to use linear time-invariant control

strategies.

• In hover, only roll moments are balanced and the vehicle has constant pitch

and yaw rates. This means that a portion of the thrust will not contribute

to compensation of gravity (see Fig. 3), therefore, the COM of the vehicle

goes through a periodic motion with nonzero radius in hover which also results

in higher power consumption. In addition, controlling one degree of freedom

affects other degrees of freedom as well which can be seen in the top left graph

in Fig. 16 while controlling the position.

Regarding the bispinner configuration, we summarize the results as follows:

• It is relatively less sensitive to the geometry of the vehicle.

• With roll and pitch moments being completely balanced, as long as there is

nonzero yaw rate in the system and for small values of tilting angle δ, linear

time-invariant control strategies are applicable.

• For large tilting angles, the deviations from the equilibrium state become so

large such that the linear time-invariant model may not be valid anymore and
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therefore, the linear time-invariant controller may not be able to stabilize the

vehicle.

• Because all forces and moments related to the horizontal motion of the vehicle

in the inertial frame are all balanced in hover, the radius of the periodic motion

will be zero. In other words, the vehicle will only be spinning about the z-axis

of the body frame which is why we always get n̄nn = (0, 0, 1). This results in

having more optimal-power configuration compared to the monospinner.

• Since both roll and pitch moments are balanced and only yaw moment is unbal-

anced, the control performance is improved compared to the monospinner and

it can be seen in the top left graph in Fig. 17 where position control results are

shown.

In brief, we can summarize the advantages of bispinner over monospinner as fol-

lows:

• Bispinner configuration is more power-optimal

• Control performance is much better in bispinner

• The system is less sensitive to geometry and therefore more design alternatives

can be explored

Needless to say, in both configurations, it is important to make sure that the

motors can respond properly to the fast periodic changes in the system. For example,

in the optimal configuration found for the monospinner in (4.23), the fuselage is
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turning at around 400 rad/sec. Thus, the response time of the motors can be added

as a new constraint to the system for the future work.
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5

Control for Crash Landing a Quad-

copter with a Rotor Failure

As robots have become part of our industries as well as our everyday life, path plan-

ning for robots in complex environments has gained significant attention in recent

years. Although robots have significant differences in application and their design,

path planning and navigation is an essential part in all of them. Given a robot, its

dynamics, representation of its environment, its initial state and a goal state, the

path planning problem is defined as finding a path from initial state to the goal

state which complies with the rules in the environment such as avoiding obstacles.

It seems that finding this path is not easy from a computational standpoint. Over

the past decades, several different algorithms have been developed some of which are

complete, meaning that they return a valid solution in a finite time if one exists and
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fail otherwise. Unfortunately, these algorithms usually are not practical due to their

complexities [31].

Practical planners using potential fields and cell decomposition methods exist,

however they are only practical for state spaces with less than five dimensions [40]-

[41]. Recently, sampling-based planning algorithms such as Rapidly-exploring Ran-

dom Trees (RRT) have proved to be practical and effective in high-dimensional state

spaces and have attracted considerable attention in the robotics community. In these

algorithms, instead of explicit representation of the environment, by connecting sam-

ple points in the obstacle-free space and generating a graph, a feasible path between

the initial state and goal state can be found. These algorithms are probabilistically

complete [42]. One of the problems with sampling-based algorithms is that they do

not necessarily return a global optimal path. However, there is a variant of RRT that

is called RRT*, which finds a path that exponentially approaches the global optimal

path in the environment as the number of samples approaches infinity [31].

In this section, path planning for emergency landing of a quadcopter is presented.

It is assumed that a fairly simple 3D representation of the environment in which

the vehicle is flying is available a priori. There are obstacles including all sensitive

regions in the environment such as the buildings, trees and lakes which we want to

avoid colliding with. Obstacles are assumed to be stationary and cuboid. An example

of such representation can be found in Fig 5.1.

For the given map, using Generalized Voronoi Diagram [40] and defining a cost

function, the minimum-cost landing spot is found. Using RRT* algorithm an obstacle-
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Fig. 5.1. An example map with obstacles. Red cubes represent obstacles.

free path is then found to connect the start point to the landing spot. Finally, using

a simple search algorithm the path is shortened further (if possible) and the vehicle

performs emergency landing by following it.

5.1 The Best Landing Spot

Selecting the location of landing is an important step in emergency situations,

simply because it determines the feasibility of the landing. For example, using the

distance of the landing spot from the vehicle and a model to compute total power

consumption while following a path, one can determine if the vehicle can safely get to

its destination. Also, during the path, the vehicle should maintain a certain distance

from the obstacles so that in case of complete power outage it would not collide with

any of them. Our goal is to find the best landing spot based on two criteria: (i)
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finding the safest landing spot with the largest clearance from the obstacles; and (ii)

finding an optimal trajectory towards the landing spot.

It is assumed that all obstacles are treated the same, therefore the safest way

(in terms of collision) to define clearance is to stay at equal distance from them (if

possible). The best way to find such points in a map is to use Generalized Voronoi

Diagram (GVD). The algorithm searches all points in the given map and calculates its

distance from the closest obstacles and if the distance from at least two obstacles are

equal, the point will be added to the GVD [40]. Note that because the z-component of

the landing spot is always zero (assuming we always land on the ground), the search

only takes place in the x-y plane of the given map. However, in order to make this

exhaustive search possible, the map is discretized with a step size which is assumed

to be 1 meter in this paper (for larger maps or scaled maps, this step size can be

scaled to reduce computation time accordingly). An example of generating GVD for

a 1000× 1000× 1000 meters map with a step size of 1 meter can be found in Fig 5.2.

To find the best landing spot using GVD, a network of obstacle-free paths (edges

of GVD as shown in blue in Fig 5.2) in the x-y plane of the given map is generated.

For each point in this network, a cost J as a function of clearance from obstacles and

distance from the vehicle is calculated as follows:

J(r, d) = a

(
1

r

)
+ bd (5.1)
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Fig. 5.2. An example of Generalized Voronoi Diagram for a given map
of the environment. Blue lines show the GVD.

where a and b are two weights to be determined for the clearance from obstacles

represented by r, and distance from the vehicle represented by d, respectively. Finally,

by calculating (5.1) for all points in GVD, the point with minimum cost can be

selected as the best landing spot. If multiple points are returned, the priority is given

to the one with minimum distance from the vehicle.
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5.2 Path Planning

In this thesis, RRT* algorithm is used to find the path connecting the position of

the vehicle to the landing spot in the given map of the environment. In particular,

two different scenarios for path planning are evaluated:

1. When the number of samples are given

2. When the number of samples are unknown

In the first scenario, when the number of samples are given (i.e., 2000 samples),

first the graph is generated and then the algorithm attempts to find the shortest path

between the start and goal states within that graph (if any exists). Note that in

this scenario there is a probability, depending on the number of samples, that the

algorithm fails.

The second scenario is slightly different. Instead of using a fixed number of sam-

ples, the algorithm keeps adding vertices to the graph until it finds a path between the

start and goal states. As the algorithm adds more vertices, the probability of finding

a path between the two points approaches 1 and as the number of vertices approaches

infinity, the probability of finding the optimal path approaches 1 as well [31].

An additional step is also added to RRT* which minimizes the length of the path

further if possible. Due to the random nature of these algorithms, the final path

has unnecessary zig-zag like segments which increases the overall length of the path.

To avoid these, a search over the vertices on the final path is performed to find the

shortest path among its vertices connecting the start state to the goal state.
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In summary, the path planning problem for emergency landing of a quadcopter

experiencing one rotor failure can be done using one of the proposed scenarios to

connect the initial position of the vehicle to the best landing spot found by the

proposed algorithm in the previous section.

5.3 Crash Landing

This section presents simulation results for emergency landing of a quadcopter

with one rotor failure. A vehicle with the same specifications introduced in Section 3.1

and with the hover solution given in (4.15) is used in the simulations. All steps can

be summarized as follows:

1. Finding the optimal hover solution after failure

2. Design of the fault tolerant controller

3. Finding the best landing spot

4. Finding the path between position of the vehicle and the landing spot

5. Following the path and landing the vehicle.

Suppose for the quadcopter after failure, an LQR controller, with the weight

matrix for reduced attitude states being Q = diag([1, 1, 20, 20]) and R = 1 being the

weight matrix for the control inputs, is designed for the optimal hover solution as

found in (4.15). For position control, damping ratio ξ = 0.65 and natural frequency

ωn = 0.8 are selected for all x, y and z coordinates. Representation of the environment
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is shown in Fig 5.3, with obstacles being red. Assume the initial position of the

vehicle after failure is at ddd0 = (500, 500, 550)T expressed in the inertial frame and as

represented by a small blue circle in the map. By generating GVD for the given map

as shown in blue in Fig. 11, and using the cost function defined in (5.1) with a = 100

and b = 1 the best landing spot is found to be at dddd = (500, 101, 0)T as represented

by a magenta asterisk. Note that in finding the best landing spot, a � b gives the

priority to the clearance from obstacles in the map.

Based on the second scenario for path planning and by setting the step size for

RRT* algorithm to 50 meters and the radius of the circle to rewire the graph to

150 meters, a path is found between the start and goal states which is shown in

magenta in Fig 5.4 and by searching through the vertices of this path the shortest

path can be retrieved as shown in yellow. Finally, by implementing the controller for

the nonlinear simulation of the quadcopter flight, the vehicle follows the yellow path

and lands the vehicle safely. The actual path of the quadcopter following the yellow

path is represented by dashed black line in Fig 5.4.

It can be seen that the controller can successfully track the path with small devi-

ations and lands the vehicle safely.
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(a) Representation in 3D space

(b) Representation in x-y plane

Fig. 5.3. Representation of the environment. Obstacles are shown in
red, GVD is represented by blue lines, initial position of the vehicle
is represented by blue circle and the best landing spot is represented
by magenta asterisk.
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(a) Representation in 3D space

(b) Representation in x-y plane

Fig. 5.4. Path planning and path following simulation results. RRT*
graph is represented by green, the initial path found by the algorithm
is shown in magenta, the final shortest path is shown in yellow and
the actual path of the quadcopter is shown in dashed black line.
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6

Conclusions and Future Works

In this thesis, modeling and control of multi-rotor UAVs with focus on their safety

and performance are presented. We devoted a chapter to mathematical modeling of

multi-rotor UAVs. For the first time, we included a complete mathematical model

of propellers, in presence of uniform freestream, in modeling multi-rotor UAVs. In

particular, two specific types of multi-rotor UAVs are studied in this thesis: i) quad-

copters with angled thrust vecotrs; and ii) spinning UAVs with streamline-shape

fuselage. For the spinning UAVs, we studied two different configurations namely

monospinner and bispinner.

In Chapter 3, first, control design for a quadcopter with angled thrust vectors

is presented along with nonlinear simulation results demonstrating position control

of the vehicle. Second, fault-tolerant control design in quadcopters with one rotor

failure is studied where a new hover definition after failure is presented. Based on
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the new definition of hover, a new equilibrium is found for the system and a linear

time-invariant system is introduced describing behavior of the system close to the

equilibrium state. Then, a linear time-invariant control strategy (e.g, LQR) is de-

veloped for the linear model to control the attitude and position of the vehicle after

failure. Third, a control strategy to control attitude and position of a spinning UAV

with streamline-shape fuselage, in both configurations, is presented for the first time

along with nonlinear simulations validating the results. In addition, controllability of

spinning UAVs is investigated in this chapter.

In Chapter 4, the performance of multi-rotor UAVs is investigated. In Section

4.1.1, we present the effects of angled thrust vectors and the position of COM of

the vehicle with respect to the propellers’ plane on stability and maneuverability of

quadcopters. The effects of tilting angles (dihedral and twist angles) on the thrust

generated by propellers and consequently on stability of the system were introduced

afterwards. Transfer functions considering pure yaw motion were derived followed by

stability analysis and formulation of a yaw damper produced by adding twist angles

to the rotors for a specific configuration. Six different configurations based on these

angles were introduced and were ranked based on stability and maneuverability. One

of those configurations led to finding the most stable design with intrinsic damping in

roll, pitch and yaw motion. The formulation for these dampers was presented followed

by stability analysis in yaw motion. The dampers in the system would be favorable for

applications where the vehicle hovers such as imaging, surveillance and monitoring.

They will be unfavorable when the vehicle is in motion and maneuverability is needed.
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As a future work, a reconfigurable system can be designed in a way to transform from

the most stable system to the most maneuverable system in the respective situation

and vice versa. Such vehicle will be able to change dihedral and twist angles on

the fly in order to transform to the required configuration. Another possible future

work is to find the optimized values for dihedral and twist angles. Two different

optimization problems can be defined: 1) optimizing the angles for the most stable

configuration; and 2) optimizing the angles for the most maneuverable configuration.

Finally, verifying the results of this paper using experiments will be done in a future

work as well. In addition, in the design of monospinner, a specific configuration

inspired from nature can be analyzed where the geometry of the fuselage is designed

similar to that of a maple seed. This configuration might lead to the design of fault

tolerant controllers in monospinners in case of rotor failure as if the only rotor failed,

the vehicle will slowly descend and land without major physical damage to its fuselage.

This could be another topic for the future works.

In Section 4.1.2, using the results of Section 4.1.1 and the control strategy de-

veloped for a quadcopter experiencing a rotor failure, a specific configuration for

quadcopters is introduced which not only results in better stability in yaw motion

but also yields the minimum-power hover solution in case of a rotor failure. In this

configuration, if a rotor fails, the other rotor turning in the same direction as the

failed motor must be shut down and then the controller stabilizes the vehicle with

the two remaining functioning rotors. This is due to adding twist angles to the rotors.
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If the twist angle is zero, all the three remaining functioning motors will be turning

and the power consumption will not be the minimum.

In section 4.2, a set of design variables are defined and an optimization problem

in introduced to find the optimal configurations for both monospinner and bispinner

which not only are power optimal in hover, but also optimal for tracking a trajec-

tory. By solving the optimization problem, the optimal configurations are found. In

addition, the effects of all the design variables on power consumption of the vehicle

are investigated separately and results are presented. In the end, nonlinear simu-

lation results for position control and a comparison between the two configurations

along with design guidelines are presented. The results suggest that the bispinner

has several advantages over the monospinner configurations including but not limited

to: i) lower power consumption; ii) better trajectory tracking performance; and iii)

less sensitive to geometry of the fuselage. For the future work, one interesting topic

may be investigating about finding the best geometry in monospinner configuration

which is controllable using the proposed linear time-invariant controller which can be

done using Monte Carlo simulations, through which, sensitivity analysis can be done

as well. Developing a nonlinear control strategy for controlling the reduced attitude

of the vehicle could also be a topic for the future works. Another topic for the future

work is of course experimenting the vehicle with optimal configurations and compare

the results with that of simulations.

Finally, Chapter 5 presents a framework for emergency landing of quadcopters in

case of complete failure of a rotor. We consider emergency landing of a quadcopter
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with angled thrust vectors experiencing a rotor failure with the optimal configuration

presented in Section 4.1.2. Also, for the configuration with minimum power consump-

tion, cascaded control strategy is used to control attitude and position of the vehicle.

For landing, first, an algorithm is proposed to find the best landing spot in a given

map of the environment where obstacles are represented by cuboids. Two parameters

are used to define a cost function in order to find the optimal landing spot in the

given map: (i) finding the safest landing spot with the largest clearance from the

obstacles; and (ii) finding an optimal trajectory towards the landing spot. In order to

properly define the clearance from obstacles, Generalized Voronoi Diagram (GVD) is

used. For all points on the GVD, the one with minimum cost is selected as the best

landing spot. A finite horizon is selected in generating the GVD. The boundary of this

horizon is estimated based on the total cost-to-go based on the power requirement.

Furthermore, due to the size and dimensionality of the search space, an RRT*-type

randomized motion planning strategy is used which can generate sub-optimal trajec-

tories on the fly in real time. Using nonlinear simulations and the designed controller,

the results of following the generated path (from RRT*) and performing emergency

landing are evaluated. The results show that the quadcopter perfectly tracks the

trajectory and lands the vehicle safely. Finally, verifying the results by experiments

and performing sensitivity analysis can be topics for the future work.
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APPENDIX



A

Rotation Matrices

Transformation from body frame B to inertial frame I can be found using a combi-

nation of three different rotations. In this thesis, we follow the conventional rotation

sequence, roll-pitch-yaw, used in aerospace applications as follows:

IRB = Rz(ψ)Ry(θ)Rx(φ) (A.1)

By expanding the rotation matrices, we get:

Rx(φ) =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 (A.2)
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Ry(θ) =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (A.3)

Rz(ψ) =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (A.4)

Finally, we can rewrite and simplify (A.1) as follows:

IRB =


cθcψ sφsθcψ − cφsψ sφsψ + cφsθcψ

cθsψ cφcψ + sφsθsψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 (A.5)

where s and c represent sin and cos functions respectively. Note that the same rotation

sequence is used for transforming from motor frame Mi to body frame B.
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