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Abstract. This chapter presents mathematical modeling for thrust force
and moments generated by a propeller in presence of freestream. In par-
ticular, the effects of a uniform freestream on propeller’s performance
are investigated. We introduce some of the applications of the proposed
model in the design of multi-rotor UAVs which helps to increase sta-
bility or maneuverability of the vehicle. In the end, simulation results
for thrust force and moments of an example propeller in presence of a
uniform freestream are presented.
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1 Introduction

Multi-rotors have gained significant attention in recent years. Due to their sim-
plicity and maneuverability, they have been used in a broad spectrum of ap-
plications such as bio-engineering [1], agronomy [2] , calibrating antenna of a
telescope [3] and inspection of infrastructures [4].

A special type of multi-rotors with four rotors, known as quadcopters, has
been extensively studied and there is a vast literature about their modeling,
design, control and path planning. These vehicles normally have an even num-
ber of propellers half of which turn in the opposite direction of the remaining
propellers. Modeling and full control of a quadcopter can be found in [5]. Quad-
copters with fixed rotors fall under the under-actuated and non-holonomic flying
machine categories. In the past decades, many different control strategies have
been developed to deal with their under-actuation to improve their performance,
agility and stability [6], [7].

Recently, there have been considerable attempts on designing simpler flying
vehicles with the minimum number of actuators. A type of these highly under-
actuated flying vehicles is called spinning UAV, also known as spinners. They
typically fly while spinning with a high angular velocity and they are controllable
in three translational degrees of freedom [8].
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In modeling of UAVs, aerodynamic model of propellers plays an important
role as it determines the majority of forces and moments in the system. There-
fore, an accurate model for the propellers is crucial in analyzing such a system.
In the literature, typically, the thrust force and moments generated by the pro-
peller is assumed to be proportional to the square of its angular velocity and the
effects of freestream on its performance is usually neglected by assuming small
freestream velocities [9], [10], [11]. However, this model is not valid in high speed
flight and its accuracy deteriorates as flight speed increases [12], [8].

It is also known that the freestream may affect propeller’s performance de-
pending on its direction and magnitude. Generally, these effects could change
propeller’s performance in two ways: i) changing the effective angle of attack
of the blades; and ii) changing the local airflow velocity over the blades. The
former effect is caused when there is a freestream with its velocity vector par-
allel to the angular velocity vector of the propeller while the latter is caused by
any freestream with its velocity vector perpendicular to that of the propeller.
Studying these effects not only helps us to derive a more realistic mathemati-
cal model for multi-rotors but also helps to find more stable and power-optimal
configurations for such vehicles [12]. Here, we use Blade Element Theory (BET)
to calculate the thrust force and moment of each blade element.

This chapter presents mathematical modeling for multi-rotor UAVs by taking
into account the effects of freestream. We begin with presenting a mathematical
model of thrust force and moments of a propeller in presence of freestream, this
proposed propeller model is used to derive equations of motion of a quadcopter
with angled thrust vectors as well as equations of motion of a spinning UAV
with two rotors and a streamline-shape fuselage.

For the quadcopter with angled thrust vector, by utilizing the proposed pro-
peller model and according to [12], more stable/maneuverable configurations
can be found. For the spinners, due to the fast rotational motion, the freestream
changes the thrust force and moments generated by the propeller significantly.
Therefore, taking the effects of freestream into account is crucial in modeling
and control of spinners. We address this issue by incorporating the effects of
freestream on propeller’s performance into mathematical modeling of spinners.
The proposed models in this chapter can be used for studying controller perfor-
mance in more details or can be used in designing a more accurate simulator for
multi-rotor UAVs.

Notation: Throughout the chapter, matrices are represented by straight bold-
face letters and all vectors are represented by italicized boldface letters. For
example, rotation matrix from frame i to frame j is represented by jRi. In addi-
tion, the term Iωωωp denotes ωωω belongs to p and is expressed in frame I. Angular
velocity vector of the vehicle is represented by ωωωB = (p, q, r)T where p, q and r
are roll, pitch and yaw rates respectively. Also, 2-Norm of ωωω is represented by
‖ωωω‖ and absolute value of scalar s is shown by |s|.



Advances in Motion Sensing and Control for Robotic Applications 3

2 Propeller Model in Presence of Freestream

Suppose we have a propeller turning with angular velocity ωωωp as expressed in a
frame attached to the center of the rotor as shown in Fig. 1. The propeller has
two blades of radius Rb and is assumed to have constant chord c. For simplicity,
first, we assume there is a uniform freestream with velocity vector VVV∞1 , as shown
in blue in Fig. 1, which is parallel to the y-axis. Later, to generalize the model for
any freestream with an arbitrary velocity vector, we will continue our analysis by
assuming a freestream with its velocity vector parallel to that of the propeller.

1

Fig. 1. Schematic of a propeller with a frame attached to its COM.

Consider a blade element (small hashed area in Fig. 2) of length c and dif-
ferential width drb where rb is the distance of the blade element from the root
of the blade. As shown in Fig. 2, the rotation of the blade generates relative air
flow velocity of magnitude rb‖ωωωp‖, over each blade element. As the propeller is
turning, the relative air flow velocity over the blade element could either be in-
creased or decreased depending on the azimuth angle of the blade and direction
of the freestream velocity. The azimuth angle ψp is defined as the angle between
the blade and the direction of VVV∞1

. Therefore, the resultant relative air flow
velocity over each blade element can be written as:

v = rb‖ωωωp‖+ ‖VVV∞1‖ sinψp (1)

In Fig. 2, for the advancing blade (0 ≤ ψp ≤ π), freestream velocity increases
the relative air flow velocity over the blade and for the retreating blade (π ≤
ψp ≤ 2π), it decreases the relative air flow velocity. The changes in the relative air
flow velocity with azimuth angle affects the overall thrust force of the propeller
and it generates a moment in the direction of the freestream velocity as shown
in blue. Therefore, using (1) and according to Blade Element Theory, thrust
force and moments of each blade element can be found as follows:

dfp =
1

2
ρacCLv

2drb (2)

dτdp =
1

2
ρacCDv

2rbdrb (3)
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1

Fig. 2. A propeller in presence of freestream.

dτp =
1

2
ρacCLv

2rb sinψdrb (4)

where ρa represents air density and CL and CD are the lift and drag coefficients
of the airfoil of the blade respectively. Also, fp represents thrust force of the
blade element, τdp represents the moment due to drag force of the blade element
and τp represents the moment due to change in thrust force with respect to the
azimuth angle of the blade.

By integrating (2), (3) and (4) over blade radius rb and azimuth angle
ψp, average thrust force and the average moments for one blade as functions of
freestream velocity and angular velocity of the propeller can be found as follows:

fp =
1

2
ρacCL

(
2R3

b

3
‖ωωωp‖2 + ‖VVV∞1‖2Rb

)
(5)

τdp =
1

4
ρacCD

(
R4
b‖ωωωp‖2 + ‖VVV∞1‖2R2

b

)
(6)

τp =
1

2
ρacCLR

3
b‖ωωωp‖‖VVV∞1

‖ (7)

Note that by assuming zero freestream velocity, equations (5), (6) and (7)
yield the simplified model for thrust force and moments of a propeller which is
widely used in the literature (i.e., [13], [14], [15], [16]).

Using the proposed model, simulation results for two complete turns of a
propeller with angular velocity ‖ωωωp‖ = 900 rad/s in presence of freestream is
presented in Fig. 3. Note that the direction of rotation and freestream velocity
are the same as those in Fig. 2. The remaining parameters of the simulations
are as follows: c = 0.03 m, CL = 1.022, CD = 0.01, Rb = 0.08 m and ρa = 1.225
kg/m3. In Fig. 3, the top plot presents variations of thrust force with respect to
blade azimuth. The red color represents the thrust force when ‖VVV∞1

‖ = 0, which



Advances in Motion Sensing and Control for Robotic Applications 5

is constant, meaning that the relative air flow velocity over the blade element
is constant for all azimuth angles. The blue color, represents thrust force of the
propeller as a function of azimuth angle when freestream velocity is nonzero,
‖VVV∞1‖ = 10 m/s.
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Fig. 3. Simulation results for thrust force and moments of a propeller in presence of
freestream.

Comparing both scenarios, it can be seen that for nonzero freestream velocity
and for 0 ≤ ψp ≤ π thrust force is increased while for π ≤ ψp ≤ 2π thrust force
is decreased which is due to higher relative air flow velocities on the advancing
blade than that over the retreating blade. The yellow color shows the average
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of thrust force of the propeller when ‖VVV∞1
‖ = 10 m/s. Results show that in

presence of nonzero freestream velocity the average thrust force of the propeller
increases.

The middle and bottom plots in Fig. 3 present variations of the moments
due to drag and freestream (τdp and τp) versus azimuth angle respectively. The
red color represents the moment when ‖VVV∞1

‖ = 0 m/s, blue color represents
variations of moment in presence of freestream velocity ‖VVV∞1‖ = 10 m/s and the
yellow color represents the average moment of the propeller when ‖VVV∞1‖ = 10
m/s.

To continue investigating the effects of freestream on propeller’s performance,
as shown in Fig. 4, assume the freestream velocity vector, VVV∞2 , is parallel to the
angular velocity vector of the propeller, ωωωp. Suppose the propeller is turning with
angular velocity ωωωp as shown in Fig. 5. In absence of freestream, there will be an
airflow velocity vector rbωωωp over each blade element as shown in green. Also, for
each blade element, the angle of attack (AOA) Θ is defined as the angle between
the chord of the blade element and the local airflow velocity vector rbωωωp.

2

Fig. 4. Propeller in presence of freestream. The freestream velocity vector VVV∞2 is
assumed to be parallel with the angular velocity vector of the propeller ωωωp.

Now, consider an uniform freestream with velocity vector VVV∞2
in the positive

direction of z-axis as shown in blue in Fig. 5 top. As shown, the freestream
changes the direction and magnitude of the resultant airflow velocity over the
blade element as shown in red in Fig. 5 top. Therefore, the new angle of attack Θ′,
in presence of freestream is greater than that in absence of freestream (Θ′ ≥ Θ).

However, if the freestream velocity vector is in the negative direction of z-
axis (see Fig. 5 bottom), it changes the direction and magnitude of the resultant
airflow velocity vector such that it decreases the effective angle of attack (Θ′ ≤
Θ).

The importance of studying AOA is because it directly affects the lift coeffi-
cient of the blade element and consequently affects the thrust force generated by
the propeller. In low speed flight regimes (subsonic) and assuming small angles
for AOA, the lift coefficient CL changes almost linearly with AOA which can be
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2

2

Fig. 5. Propeller in presence of freestream. The freestream velocity vector VVV∞2 is
assumed to be parallel with ωωωp. On top, VVV∞2 is the positive direction of z-axis and in
bottom it is assumed to be in the opposite direction.

written as follows [17]:
∆CL
∆Θ

= σ (8)

where σ is a constant which is determined through experiments in wind tunnel.
From (2), any increase (decrease) in CL increases (decrease) the thrust force of
the blade element. Therefore, in summary the results are as follows:

– Any freestream with positive (negative) z-component velocity (expressed in
the propeller’s frame) increases (decreases) the AOA which increases (de-
creases) the thrust force.

Furthermore, to formulate the changes in thrust force of the propeller, first
we can write the changes in AOA of each blade element as follows:

∆Θ = Θ −Θ′ = arctan
‖VVV∞2

‖
‖rbωωωp‖

(9)

Finally, using (2), (8) and (9), the changes in thrust force of the propeller
can be written as follows:

∆fp =
1

4
ρacσR

2
b‖VVV∞2‖‖ωωωp‖ (10)

From (10), it can be seen that the changes in thrust force is proportional to
the magnitude of the freestream velocity vector VVV∞2

.
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In summary, we presented the significance of the effects of freestream on
performance of propellers. We formulated these effects as functions of propeller
parameters and also the parameters of the freestream. Table 1 presents all pa-
rameters involved in the proposed propeller model. We continue this chapter
by presenting mathematical modeling of two types of multi-rotor UAVs, namely
quadcopters and spinners, using the proposed propeller model.

Table 1. Parameters used in modeling propeller’s thrust and moments.

Parameter Definition

ωωωp angular velocity vector of the propeller

Θ angle of attack

CL, CD lift and drag coefficients of the airfoil

VVV∞ freestream velocity vector

σ slope of CL vs Θ curve for the airfoil

Rb blade radius of the propeller

c chord of the blade

rb distance from blade element to root of the blade

ρa air density

fp thrust force of the propeller

τdp moment of the propeller due to drag

τp moment of the propeller due to asymmetrical lift distribution

3 Dynamic Model of Quadcopters with Angled Thrust
Vectors

This section presents mathematical modeling of quadcopters with angled thrust
vectors by utilizing the proposed model of the propeller in the previous section.
Literature pertinent to the mathematical modeling of quadcopters and their
flight control is vast. In our derivation, we assume a full model of the gyroscopic
moments and cross-coupling of angular momentum in the system. More specifi-
cally, we derive the dynamic model of quadcopters assuming that: i) the thrust
vector for each rotor would make a non-zero angle with the vertical axis of the
quadcopter; and ii) the center of mass (COM) of the quadcopter does not lie
on the same plane where the center-of-mass of all the motors lie on (blue plane
shown in Fig. 6). However, we still assume that the geometry of quadcopter
fuselage is symmetric with respect to both x and y axes.

The angle between the thrust vector of each rotor and the vertical axis of the
fuselage is further divided into: i) the dihedral angle; and ii) twist (i.e., lateral
tilting) angle ( Figs 7 and 8). We assume that the central hub of all four rotors
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lie on a flat horizontal plane (blue plane in Fig. 6), called flat plane from this
point on, from which the location of the COM is referenced (i.e., the COM can
be either above, below, or right on this plane).

h

Fig. 6. Quadcopter in “+” configuration. Body frame is shown in blue and is attached
to the center-of-mass of the quadcopter. A frame, shown in blue, is attached to each
motor to determine orientation of the motors with respect to the body frame. All the
motors are located at distance l and h from z-axis and x-y plane of the body frame
respectively.

The dynamic model developed in this section has three additional terms
compared to that in the flat quadcopters (this is the term used for the regular
common quadcopters), as: dihedral angle βi, twist angle αi, and the distance
between the COM and the flat plane h (please note that h could take positive
and negative values, measured in z-direction of the body frame). In the flat model
of quadcopters one has: βi = αi = d = 0. We use Newton’s method for deriving
the dynamic model of the quadcopter and we assume a “+” configuration.

The body frame BO−BxByBz (red color in Fig. 6) is attached to the center
of mass of the vehicle. Four frames named MiO − MixMiyMiz (blue color in
Fig. 6) are attached to motors. Motors are turning with angular velocities γ̇i
(i = 1, 2, ..., 4) about zMi

-axis. Position of the vehicle is expressed in the inertial
frame I. Also Bωωωpi,I indicates that ωωω belongs to the ith propeller with respect to
an inertial frame I and is expressed in the body frame B. Finally, we represent
a rotation matrix about axis A by angle θ as RA(θ).

Orientation of the body frame with respect to the inertial frame can be
captured by the rotation matrix IRB from body frame to inertial frame. This
rotation matrix is a function of time and its evolution in time can be obtained



10 Mojtaba Hedayatpour et al.

Fig. 7. Twist angle α1 about the x-axis of the motor frame M1.

Fig. 8. Dihedral angle β1 about the y-axis of the motor frame M1.

as follows:
IṘB = IRB sk(BωωωB,I) (11)

where sk(BωωωB,I) is the skew-symmetric matrix of angular velocity of the body
with respect to the inertial frame as expressed in the body frame BωωωB,I =
[p, q, r]T .

Likewise, the orientation of each motor frame Mi can be obtained with re-
spect to the body frame. First the position of the origin of frame Mi with respect
to body frame from the origin of the body frame can be written as:

BOOOMi
= RzB ((i− 1)

π

2
)

 l0
h

 , (i = 1, 2, ..., 4) (12)

Since we are using a quadcopter in “+” configuration, we assume that the
motors are evenly distributed by angle π

2 about zB-axis. Therefore, the trans-
formation from frame Mi to body frame is obtained as follows:

BRMi = Rz((i− 1)
π

2
)Ry(βi)Rx(αi) , (i = 1, 2, ..., 4) (13)
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Suppose the quadcopter is consisted of several rigid bodies and it is con-
sidered to be symmetric about its axes of rotation. Because of the symmetry,
the inertia tensor of the vehicle, IB , will be diagonal and is expressed in the
body frame. We also assume that the moment of inertia of the propellers, Ip, are
very small compared to IB . We can neglect drag force in angular motion of the
body by assuming very small angular velocities. Considering these simplifying
assumptions, the rotational motion is governed by the following equation:

τττ = IBω̇ωωB,I +

4∑
i=1

IpBω̇ωωpi + BωωωB,I ×
(
IBωωωB,I +

4∑
i=1

IpBωωωpi

)
(14)

where Bωωωpi is the angular velocity vector of the ith propeller with respect to the
inertial frame as expressed in the body frame which can be written as follows:

Bωωωpi = BRMi [0, 0, γ̇
2
i ]T (15)

where γ̇i is the angular velocity of the ith propeller about z-axis of frame Mi.
In (14), τττ is the external moment generated by thrust forces and the reaction
from propellers plus the drag of the fuselage expressed in the body frame (τττdB ).
Thrust force and reaction moment of each propeller as expressed in the frame
Mi, can be calculated using the proposed propeller model in the previous section.
The external moment τττ can be written as follows:

τττ = τττdB +

4∑
i=1

(
BOOOMi

× BRMi

Mifffpi + BRMi

(
Miτττpi + Miτττdpi

))
(16)

The position of the vehicle in inertial frame is shown by Cartesian coordinates
ddd = [d1, d2, d3]T . Therefore, the equation governing translational motion can be
written as follows:

md̈dd = IRB

4∑
i=1

(
BRMi

Mifffpi

)
+mggg (17)

where m is total mass of the vehicle and ggg is gravitational acceleration vector
expressed in the inertial frame. Note that we assume small translational veloc-
ities, therefore the drag forces due to translational motion can be neglected in
(17).

Although the changes in propeller’s thrust force and moments in presence of
freestream seem to be insignifant in quadcopters, a detailed study in [12] reveals
their significant effects on stability/maneuverablity of quadcopters. According
to this study, by manipulating the dihedral and twist angles, the most statically
stable as well as the most maneuverable configurations for quadcopters can be
found.
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4 Dynamic Model of Spinning UAVs with
Streamline-shape Fuselage

In this section, dynamic model of a spinning UAV including aerodynamic model
of a propeller in presence of freestream velocity is presented for the first time
followed by introducing two specific configurations namely, monospinner and
bispinner.

Fig. 9 shows a vehicle of mass m with a streamline-shape fuselage. Two
rotors are positioned at ppp1 = (0, l1, h1) and ppp2 = (0, l2, h2) in the y-z plane of
the body frame, B, as shown in blue. The ith rotor can rotate independently
about the y-axis of the body frame by angle δi with rotations in the direction
of positive y-axis resulting in positive angles. A propeller is attached to each
rotor turning with angular velocity ωpieeepi where ωpi is the magnitude of angular
velocity and eeepi is the unit vector determining the direction of rotation of the
ith propeller in the body frame. Also, the angular velocity of the fuselage with
respect to the inertial frame as expressed in the body frame is represented by
ωωωB = (p, q, r)T . Furthermore, it is assumed the propeller has two blades with
chord cp and radius Rp. The fuselage is to be streamline-shape, aerodynamic
and similar to the propeller with four blades with chord cB and radius RB . It is
also assumed that the chord is constant throughout the radius of the blades.

R

c

R
Bc

B

Fig. 9. A spinning UAV with two rotors and streamline-shape fuselage.

The moment of inertia matrix of the propeller is approximated by the moment
of inertia of a disk as expressed in the body frame by Ip = diag(Ipxx, I

p
yy, I

p
zz).

The moment of inertia matrix of the fuselage is also represented by a diagonal
matrix IB = diag(IBxx, I

B
yy, I

B
zz). Furthermore, it is assumed that the fuselage is

symmetric such that IBxx = IByy. In addition, the position of the vehicle expressed
in inertial frame is denoted by ddd = (d1, d2, d3). The equations of motion can now
be written as follows:

τττ = IBω̇ωωB +

2∑
i=1

Ipω̇ωωpi + sk(ωωωB)
(
IBωωωB +

2∑
i=1

Ip(ωωωpi +ωωωB)
)

(18)
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τττ =

2∑
i=1

(
pppi × fffpi

)
+

2∑
i=1

τττdpi + τττdB +

2∑
i=1

τττpi (19)

md̈dd = IRB

( 2∑
i=1

fffpi + fffB

)
+mggg (20)

In the right hand side of (18), the first two terms represent the moments due
to angular accelerations of the fuselage and propellers. The third term represents
cross-coupling of angular momentum due to rotation of the fuselage and pro-
pellers and sk(ωωωB) represents the skew-symmetric matrix of the angular velocity
vector of the fuselage. In the right hand side of (19), the first term represents the
moment due to propeller’s thrust force about the center of mass of the vehicle,
the second term represents the sum of reaction moments of the propellers, the
third term is the moment due to drag of the fuselage and the last term is the
sum of moments due to asymmetrical lift distribution over the advancing and
retreating blades of the propellers.

In (20), fffB represents thrust force generated by the streamline-shape fuse-
lage, ggg is the gravitational acceleration and IRB is the rotation matrix from
body frame to inertial frame. Since the fuselage is turning with yaw rate r about
the z-axis of the body frame, it generates a thrust force fffB along with a moment
τττdB due to its aerodynamic drag, in the direction of z-axis of the body frame.
These can be calculated using Blade Element Theory as follows:

fffB =
1

3
ρacBCLB

R3
Br

2 eeefffB
(21)

τττdB =
1

4
ρacBCDB

R4
Br

2 eeeτττdB
(22)

where ρa is the air density and CLB
and CDB

are lift and drag coefficients
of the fuselage respectively. Also, eeefffB

and eeeτττdB
represent unit vectors showing

the direction of thrust force and moment of the fuselage respectively. In both
propellers and the fuselage, we assume the lift and drag coefficients, CL and CD
are functions of angle of attack Θ as follows:

CL = fL(Θ) CD = fD(Θ) (23)

From experimental results in [18], the functions fL and fD used in (23) can be
approximated for small angle of attacks (−10◦ ≤ Θ ≤ 10◦).

4.1 Effects of Freestream in Spinning UAVs

In this section, based on the propeller model proposed in this chapter, we derive
equations to determine the effective angle of attack, thrust force and moments
of the propellers in a spinning UAV.

Suppose a propeller is turning with angular velocity vector ωωωp as shown in
Fig. 10. The rotor is positioned at distance l from COM of the vehicle and is
tilted by angle δ about the y-axis of the body frame and the fuselage is spinning
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at yaw rate r about the z-axis of the body frame as shown in Fig. 10. As the
vehicle is spinning, the propeller experiences an uniform freestream expressed in
the body frame as:

BVVV∞ = (rl, 0, 0)T (24)

Because of the tilting angle δ, this freestream will have vertical and horizontal
components in the propeller’s plane. According to Blade Element Theory, the
vertical component changes the effective angle of attack of the blades as follows:

Θeff = θ + arctan
rl sin δ

|Rp(‖ωωωp‖+ r cos δ)|
(25)

where θ is the pitch angle of the blade, Rp is the blade radius and (‖ωωωp‖+r cos δ)
is the resultant angular velocity of the propeller with respect to the inertial frame.
Equation (25) indicates that depending on the sign of tilting angle and the yaw
rate, the effective angle of attack could be either increased or decreased.

l

Fig. 10. Effects of freestream on propeller’s performance in a spinning UAV.

We have shown that the horizontal component of freestream velocity (per-
pendicular to that of the propeller) changes the local airflow velocity over each
blade element. Also, the vertical component of freestream velocity (parallel to
that of the propeller) changes the effective angle of attack of the blade elements.
Therefore, considering these changes and according to equations (5), (6) and
(7), thrust force and the moments generated by the propeller can be rewritten
as follows:

fffp = ρacpCLp

(
R3
p‖ωωωp‖2

3
+
R3
pr

2 cos2 δ

3
+
Rpr

2l2 cos2 δ

2
+

2R3
pr‖ωωωp‖ cos δ

3

)
eeefffp

(26)

τττdp = ρacpCDp

(
R4
p‖ωωωp‖2

4
+
R4
pr

2 cos2 δ

4
+
R2
pr

2l2 cos2 δ

2
+
R4
pr‖ωωωp‖ cos δ

2

)
eeeτττdp

(27)
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τττp = ρacpCLp

(
R3
p‖ωωωp‖rl cos δ +R3

pr
2l cos2 δ

3

)
eeeτττp (28)

where eeefffp
, eeeτττdp

and eeeτττp are unit vectors expressed in the body frame to
determine the directions of propeller’s thrust force, reaction moment and the
moment due to asymmetrical lift distribution respectively.

Finally, by adding the following constraints to the system, two specific config-
urations namely monospinner and bispinner, are introduced. The first configura-
tion is achieved when l1 = l2 = l, δ1 = δ2 = δ and h2 is slightly larger or smaller
than h1 such that the second rotor can be positioned either above or below the
first rotor (e.g., h2 = 1.1h1 = h) . This configuration is also known as monospin-
ner since the two rotors could be replaced by a single rotor which yields to the
simplest possible configuration for a multi-rotor flying vehicle. The second con-
figuration is defined such that l2 = −l1 = l, δ2 = −δ1 = δ and h1 = h2 = h, also
known as bispinner which provides more stability and improved controllability
compared to the monospinner.

5 Conclusion

A complete mathematical model for thrust force and moments generated by a
propeller in presence of an uniform freestream is presented. Using simulation re-
sults, it is shown that nonzero freestream velocity has siginifcant effects on both
thrust force and moments of the propeller. The proposed model is used to derive
complete equations of motion of two types of multi-rotor UAVs. First, equations
of motion of a quadcopter with angled thrust vector is presented followed by sine
remarks on applications and effects of the proposed propeller model on stabil-
ity and maneuverability of quadcopters. Second, a new type of spinning UAVs
with streamline-shape fuselage is introduced where the proposed propeller model
is paramount in deriving its equations of motion. The proposed mathematical
models can be used in testing and evaluating sophisticated control strategies as
well as being used in designing more accurate simulators for multi-rotor UAVs.
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